首页> 外文学位 >Cell Interactions within Biomimetic Apatite Microenvironments.
【24h】

Cell Interactions within Biomimetic Apatite Microenvironments.

机译:仿生磷灰石微环境中的细胞相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Bioactive ceramics, such as calcium phosphate-based materials, have been studied extensively for the regeneration of bone tissue. Accelerated apatite coatings prepared from biomimetic methods is one approach that has had a history of success in both in vitro and in vivo studies for bone regeneration [1]-[4]. However, how cells interact within the apatite microenvironment remains largely unclear, despite the vast literature available today. In response, this thesis evaluates the in vitro interactions of a well-characterized osteoblast cell line with the apatite microenvironment. For this, the cellular response to several aspects of the apatite microenvironment was separately examined in order to piece together a more simplified picture of a complex and dynamic system: (1) the influence of accelerated apatite on local calcium and phosphate concentration, (2) the role of protein adsorption onto apatite surfaces, and (3) apatite surface charge. Furthermore, the immunopotentiating properties of apatite were also characterized by examining monocyte response to 2D and 3D apatite-coated model culture systems in vitro.;A rapid "pull-down" of extracellular Ca2+and PO4 3- ions onto the apatite surface could be measured upon the incubation of apatites in cell culture medium, suggesting that cells may be subject to changing levels of Ca2+and PO4 3- within their microenvironment. Changing levels of Ca2+and PO43- are likely to have large implications for the biological response to apatites as increasing concentrations above a certain threshold were confirmed to be cytotoxic. Proteins were found to be critical in the mediation of cell-apatite interactions, as adherence of MC3T3-E1 cells to apatite surfaces without protein coatings resulted in significant levels of cell death within 24 hours in serum-free media. In the absence of protein-apatite interaction, cell viability could be restored upon treatment of the cells with inhibitors to PO43- transport, suggesting that PO43- uptake may play a role in viability. In contrast, rescue was not observed upon treatment with calcium channel inhibitors. The apatite surface charge could be modulated by treating the apatite surface with biomolecular coatings (proteins, polyamino acids), or with non-biological coatings of carbon or gold. In general, surface treatments that resulted in a more negatively-charged apatite surface, relative to that of bare apatite, promoted cell survival in a dose-dependent manner. A potential immunomodulatory role for apatite may contribute to its overall pro-osteogenic capacity, as apatite coatings could enhance monocyte adhesion in the absence of activation factors. Moreover, the presence of monocytes or monocyte conditioned media was shown to promote osteoblastic differentiation on apatite-coated substrates in vitro. Taken together, this investigation provides an initial understanding of the cellular response to various elements within the apatite microenvironment, and may provide the foundation for furthering the development of apatite materials for bone tissue engineering.
机译:生物活性陶瓷(例如磷酸钙基材料)已被广泛研究用于骨骼组织的再生。由仿生方法制备的加速磷灰石涂层是一种在骨再生的体外和体内研究中均具有成功历史的方法[1]-[4]。然而,尽管今天有大量文献报道,但在磷灰石微环境中细胞如何相互作用仍不清楚。作为回应,本论文评估了特征明确的成骨细胞与磷灰石微环境的体外相互作用。为此,分别检查了对磷灰石微环境几个方面的细胞反应,以使复杂而动态的系统更加简化:(1)加速磷灰石对局部钙和磷酸盐浓度的影响,(2)蛋白质吸附到磷灰石表面上的作用,以及(3)磷灰石表面电荷。此外,还通过检查体外对2D和3D磷灰石涂层模型培养系统的单核细胞应答来表征磷灰石的免疫增强特性。可以将磷灰石表面的细胞外Ca2 +和PO4 3-离子快速“拉下”。磷灰石在细胞培养基中孵育后的测定表明细胞在其微环境中可能会经历Ca2 +和PO4 3-水平的变化。 Ca2 +和PO43-水平的变化可能对磷灰石的生物学反应具有重大影响,因为确定浓度增加到一定阈值以上具有细胞毒性。发现蛋白质在细胞-磷灰石相互作用的介导中至关重要,因为MC3T3-E1细胞粘附在没有蛋白质涂层的磷灰石表面上会导致无血清培养基在24小时内出现大量细胞死亡。在没有蛋白-磷灰石相互作用的情况下,用PO43-转运抑制剂处理细胞后可以恢复细胞活力,这表明PO43-摄取可能在活力中起作用。相反,用钙通道抑制剂治疗后未观察到抢救。磷灰石表面电荷可通过用生物分子涂层(蛋白质,聚氨基酸)或碳或金的非生物涂层处理磷灰石表面来调节。通常,相对于裸露的磷灰石,导致磷灰石表面带负电的表面处理以剂量依赖的方式促进细胞存活。磷灰石的潜在免疫调节作用可能有助于其整体成骨能力,因为在没有激活因子的情况下,磷灰石涂层可以增强单核细胞粘附。此外,显示单核细胞或单核细胞条件培养基的存在可促进体外磷灰石涂层基质上成骨细胞的分化。两者合计,这项研究提供了对磷灰石微环境中各种元素的细胞反应的初步了解,并可能为进一步开发用于骨组织工程的磷灰石材料提供基础。

著录项

  • 作者

    Tsang, Eric Joseph.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号