首页> 外文学位 >On the Boltzmann equation: Hydrodynamic limit with long-range interactions and mild solutions.
【24h】

On the Boltzmann equation: Hydrodynamic limit with long-range interactions and mild solutions.

机译:关于玻尔兹曼方程:具有远距离相互作用和温和溶液的流体动力极限。

获取原文
获取原文并翻译 | 示例

摘要

This thesis is devoted to the mathematical study of the Boltzmann equation, a fundamental model of collisional kinetic theory, and contains two distinct contributions to the subject.;Firstly, we establish a rigorous demonstration of the hydrodynamic convergence of the Boltzmann equation towards a Navier-Stokes-Fourier system under the presence of long-range interactions. This convergence is obtained by letting the Knudsen number tend to zero and has been known to hold at least formally for over a decade. It is only recently that a fully rigorous mathematical derivation of this hydrodynamic limit was discovered. However, these results failed to encompass almost all physically relevant collision kernels due to the cutoff assumption, which requires that the cross sections be integrable. Indeed, as soon as long-range intermolecular forces are present, non-integrable collision kernels have to be considered because of the enormous amount of grazing collisions in the gas. In this long-range setting, the Boltzmann operator becomes a singular integral operator and the known rigorous proofs of hydrodynamic convergence just don't carry over to that case. In fact, the DiPerna-Lions solutions don't even make sense in this situation and the relevant global solutions to the Boltzmann equation are the so-called renormalized solutions with a defect measure developed by Alexandre and Villani. Our work overcomes the new mathematical difficulties coming from long-range interactions by proving the hydrodynamic convergence of the Alexandre-Villani solutions towards the Leray solutions.;Secondly, we develop a new theory of existence of global solutions to the Boltzmann equation for small initial data, which we name mild solutions in analogy with the mild solutions for the Navier-Stokes equations. The existence comes as a result of the study of the competing phenomena of dispersion, due to the transport operator, and of singularity formation, due to the nonlinear Boltzmann collision operator. It is the joint use of the so-called dispersive estimates with new convolution inequalities on the gain term of the collision operator that allows to obtain uniform bounds on the solutions and thus demonstrate the existence of solutions.
机译:本论文致力于碰撞动力学理论的基本模型玻尔兹曼方程的数学研究,对这一问题有两个不同的贡献。首先,我们建立了玻尔兹曼方程向纳维耶水力收敛的严格证明。远程交互作用下的Stokes-Fourier系统。通过使Knudsen数趋于零来获得这种收敛,并且已知至少正式保持了十多年。直到最近,才发现该流体动力极限的完全严格的数学推导。然而,由于截断假设,这些结果未能涵盖几乎所有与物理相关的碰撞核,这要求横截面是可积的。确实,一旦存在远距离的分子间作用力,就必须考虑不可积分的碰撞核,因为气体中存在大量掠射碰撞。在这种远程设置下,玻尔兹曼算子成为奇异积分算子,而已知的严格的流体动力学收敛证明只是不会延续到那种情况。实际上,在这种情况下,DiPerna-Lions解决方案甚至没有任何意义,Boltzmann方程的相关全局解决方案是亚历山大和维拉尼开发的具有缺陷度量的所谓的重新规范化解决方案。我们的工作通过证明Alexandre-Villani解向Leray解的流体力学收敛性克服了远程相互作用带来的新的数学困难;其次,我们为小初始数据开发了Boltzmann方程整体解存在性的新理论。 ,我们将其命名为与Navier-Stokes方程的温和解类似的温和解。之所以存在,是因为研究了由于传输算子而引起的色散竞争现象,以及由于非线性的玻耳兹曼碰撞算子而引起的奇异形成现象。正是在碰撞算子的增益项上结合使用了具有新卷积不等式的所谓色散估计,才能获得解的统一边界,从而证明了解的存在。

著录项

  • 作者

    Arsenio, Diogo.;

  • 作者单位

    New York University.;

  • 授予单位 New York University.;
  • 学科 Mathematics.;Physics Fluid and Plasma.;Physics Theory.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 270 p.
  • 总页数 270
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号