首页> 外文学位 >beta-Lactam Resistance and Novel Therapeutics for Staphylococcus aureus.
【24h】

beta-Lactam Resistance and Novel Therapeutics for Staphylococcus aureus.

机译:β-内酰胺耐药性和金黄色葡萄球菌的新疗法。

获取原文
获取原文并翻译 | 示例

摘要

Staphylococcus aureus is an important human pathogen capable of causing disease in otherwise healthy individuals. It causes mostly skin and soft tissue infections but can cause more invasive diseases. Treatment for S. aureus has become a problem due to increasing resistance and limited new therapeutics, particularly for more serious infections. Methicillin-resistant S. aureus (MRSA) displays class resistance to beta-lactam antibiotics through the presence of penicillin-binding protein 2a (PBP2a), encoded by mecA. Chapter 1 contains a thorough literature review on MRSA and antibiotic resistance, including epidemiology, therapeutic options, mechanisms of antibiotic resistance, modes of resistance acquisition and S. aureus animal models. MRSA has a great capacity to rapidly develop antibiotic resistance, defined as the ability of bacteria to resist a drug to which it was originally sensitive. Limited antibiotics are approved for severe MRSA infections including vancomycin, daptomycin, linezolid and ceftaroline. Resistance to these drugs almost always occurs in MRSA backgrounds rather than methicillin-sensitive S. aureus (MSSA) backgrounds. Invasive MRSA infections have been associated with treatment failure and increased risk of mortality. The development of new antibiotics is of utmost importance. This dissertation encompasses the following areas of research: i) ability of S. aureus to develop resistance to new beta-lactam antibiotics, ii) potential pathways to prevent antibiotic resistance and iii) efficacy studies of a new antibiotic as a potential alternative for MRSA treatment.;Ceftobiprole and ceftaroline, members of a new class of beta-lactams, target PBP2a with high affinity, the core component of beta-lactam resistance in MRSA strains. Ceftobiprole is in phase 3 clinical trials while ceftaroline has been FDA approved. The goal of Chapters 2 and 3 was to identify mechanisms of resistance and likely targets associated with resistance. Chapter 2 determined resistance could be generated to ceftobiprole and ceftaroline by passaging MRSA strains in increasing concentrations of antibiotic. The mechanism of resistance in these mutants was mutagenesis of mecA and mutations in other PBPs. Chapter 3 analyzed mecA-independent mechanisms of resistance to determine the affect of these antibiotics in the absence of PBP2a. MRSA strains cured of SCCmec were passaged in ceftaroline and ceftobiprole, resulting in mutants with high-level, broad-spectrum beta-lactam resistance. These mutants have mutations in pbp4 and other genes as well as upregulaed pbp4 mRNA levels in some mutants. Knowledge gained from these studies will provide information on novel mechanisms of beta-lactam resistance and will guide development of new antibiotics.;Chapter 4 is dedicated to exploring the role of the SOS stress response in antibiotic resistance. The SOS response is a stress response regulated by LexA, a transcriptional repressor, and RecA, activator of LexA. When bacteria are exposed to stimuli that break DNA (e.g. UV, antibiotics, etc.), RecA activates LexA, causing derepression of the SOS genes, including error-prone polymerases that increase mutational frequencies. beta-lactams have been shown to activate the SOS response in certain strains but not in a prevalent community-acquired MRSA (CA-MRSA) background. Given the increasing prevalence of CA-MRSA strains and beta-lactam resistance, exposure of MRSA to beta-lactams could potentially activate the SOS response resulting in increased antibiotic resistance. The goal of this chapter is to test the role of the SOS response in antibiotic resistance with beta-lactam induction in CA-MRSA. To test this hypothesis, a non-cleavable lexA mutant was created, which constitutively represses the SOS response. The results of this study indicate that, in the USA300 background, the SOS response was not solely responsible for increased antibiotic resistance and suggests that this pathway might not be a good therapeutic target to decrease emergence of resistance in CA-MRSA strains.;Chapter 5 explores recently discovered options in the presence of ceftaroline-resistance or beta-lactam intolerance. Given the emergence of strains resistant to antibiotics used for severe MRSA infections including vancomycin, daptomycin, linezolid and ceftaroline, new therapeutics are needed. Tedizolid phosphate is a second-generation oxazolidinone in late stage clinical development with activity against MRSA. The goal of this chapter is to test the efficacy of tedizolid phosphate in an animal model of invasive MRSA infection. Tedizolid phosphate was compared to standard of care antibiotics used to treat MRSA bacteremia, vancomycin and daptomycin, in a rabbit model of endocarditis. At high doses, tedizolid phosphate was non-inferior to vancomycin. At doses achieving serum concentrations similar to human doses, tedizolid phosphate was not as efficacious as vancomycin or daptomycin. Our results suggest tedizolid phosphate is ineffective at treating severe infections, such as MRSA endocarditis, compared to vancomycin.;The dissertation confirms the ability of S. aureus to develop resistance to new antibiotics and further describes the difficulty in developing efficacious new therapies. Discovering mechanisms of resistance will provide knowledge for potential new anti-MRSA therapeutics.
机译:金黄色葡萄球菌是重要的人类病原体,能够在其他健康个体中引起疾病​​。它主要引起皮肤和软组织感染,但可以引起更具侵略性的疾病。由于耐药性的增加和新疗法的限制,特别是对于更严重的感染,金黄色葡萄球菌的治疗已成为一个问题。耐甲氧西林金黄色葡萄球菌(MRSA)通过存在由mecA编码的青霉素结合蛋白2a(PBP2a),表现出对β-内酰胺类抗生素的抗药性。第1章包含有关MRSA和抗生素耐药性的详尽文献综述,包括流行病学,治疗选择,抗生素耐药性机制,耐药性获得方式和金黄色葡萄球菌动物模型。 MRSA具有快速发展抗生素抗药性的强大能力,抗菌素抗药性是指细菌抵抗其最初敏感的药物的能力。有限的抗生素已被批准用于严重的MRSA感染,包括万古霉素,达托霉素,利奈唑胺和头孢洛林。对这些药物的耐药性几乎总是发生在MRSA背景中,而不是对甲氧西林敏感的金黄色葡萄球菌(MSSA)背景中。侵入性MRSA感染与治疗失败和死亡风险增加相关。开发新的抗生素至关重要。本论文包括以下领域的研究:i)金黄色葡萄球菌对新型β-内酰胺类抗生素产生抗药性的能力; ii)预防抗生素抗性的潜在途径; iii)作为MRSA治疗的潜在替代品的新型抗生素的功效研究头孢比普罗和头孢洛林是新型β-内酰胺类的成员,它们以高亲和力靶向PBP2a,这是MRSA菌株中β-内酰胺抗性的核心组成部分。头孢比普列正在进行3期临床试验,而头孢洛林已获FDA批准。第2章和第3章的目标是确定抗药性的机制以及与抗药性相关的可能目标。第2章确定了通过在增加浓度的抗生素中传代MRSA菌株可产生对头孢比普利和头孢洛林的耐药性。这些突变体的抗性机制是mecA的诱变和其他PBP中的突变。第3章分析了不依赖mecA的耐药机制,以确定在缺乏PBP2a的情况下这些抗生素的作用。治愈了SCCmec的MRSA菌株在头孢洛林和头孢比普林中传代,从而产生具有高水平广谱β-内酰胺抗性的突变体。这些突变体在pbp4和其他基因中具有突变,并且在某些突变体中具有上调的pbp4 mRNA水平。从这些研究中获得的知识将提供有关β-内酰胺耐药性的新机制的信息,并将指导新抗生素的开发。第4章致力于探讨SOS应激反应在抗生素耐药性中的作用。 SOS响应是由LexA(转录阻遏物)和LexA激活剂RecA调节的应激反应。当细菌暴露于破坏DNA的刺激下(例如紫外线,抗生素等)时,RecA会激活LexA,从而导致SOS基因的表达降低,包括容易增加突变频率的易错聚合酶。在某些菌株中,β-内酰胺类可激活SOS反应,但在社区获得性流行的MRSA(CA-MRSA)背景中却不能。鉴于CA-MRSA菌株的患病率增加和β-内酰胺耐药,将MRSA暴露于β-内酰胺可能会激活SOS反应,从而导致抗生素耐药性增加。本章的目的是测试CA-MRSA中β-内酰胺诱导的SOS反应在抗生素耐药性中的作用。为了检验该假设,创建了不可切割的lexA突变体,该突变体可组成型抑制SOS反应。这项研究的结果表明,在USA300背景下,SOS反应不仅是引起抗生素耐药性增加的原因,并且表明该途径可能不是降低CA-MRSA菌株耐药性出现的良好治疗靶标。第5章探索了对头孢洛林耐药或β-内酰胺不耐受存在的新发现的选择。鉴于出现了用于严重MRSA感染的抗生素耐药株,包括万古霉素,达托霉素,利奈唑胺和头孢洛林,需要新的治疗方法。磷酸Tedizolid磷酸酯是第二代恶唑烷酮,在临床后期开发中具有抗MRSA活性。本章的目的是在侵袭性MRSA感染的动物模型中测试磷酸替硝唑的功效。在兔子心内膜炎模型中,将磷酸替地唑酯与用于治疗MRSA菌血症,万古霉素和达托霉素的标准护理抗生素进行了比较。在高剂量时,泰地唑磷酸酯不逊于万古霉素。达到与人体剂量相似的血清浓度的剂量,泰替唑磷酸酯不如万古霉素或达托霉素有效。我们的研究结果表明,与万古霉素相比,泰替唑磷酸酯在治疗严重感染(如MRSA心内膜炎)方面无效。论文证实了金黄色葡萄球菌对新抗生素产生抗药性的能力,并进一步描述了开发有效新疗法的难度。发现抗药性机制将为潜在的抗MRSA新疗法提供知识。

著录项

  • 作者

    Chan, Liana Celene.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Microbiology.;Medicine.;Biology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号