首页> 外文学位 >Numerical simulation of micro-filtration of oil-in-water emulsions.
【24h】

Numerical simulation of micro-filtration of oil-in-water emulsions.

机译:水包油乳液微滤的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

This study addresses the issue of oil removal from water using hydrophilic porous membranes. The effective separation of oil-in-water dispersions involves high flux of water through the membrane and, at the same time, high rejection rate of the oil phase. The effects of transmembrane pressure and crossflow velocity on rejection of oil droplets and thin oil films by pores of different cross-section are investigated numerically by solving the Navier-Stokes equation. We found that in the absence of crossflow, the critical transmembrane pressure, which is required for the oil droplet entry into a circular pore of a given surface hydrophilicity, agrees well with analytical predictions based on the Young-Laplace equation. An analytical expression for the critical pressure in terms of geometric parameters of the pore cross-section is validated via numerical simulations for a continuous oil film on elliptical and rectangular pores. With increasing crossflow velocity, the shape of the oil droplet is strongly deformed near the pore entrance and the critical pressure of permeation increases. We determined numerically the phase diagram for the droplet rejection, permeation, and breakup depending on the transmembrane pressure and shear rate. The critical pressure of permeation is identified as the line separating permeation and rejection regions. Using a novel method for computing the critical pressure, we investigated the effect of various physical and geometrical parameters on the critical pressure of permeation and breakup of droplets under shear flow. It is demonstrated numerically that the critical pressure of permeation increases with shear rate, viscosity ratio, surface tension coefficient, contact angle, and droplet size. On the other hand, droplet breakup at the pore entrance is facilitated at lower values of the surface tension coefficient, higher oil-to-water viscosity ratio, and larger droplet size. Using simple force and torque balance arguments, an estimate for the increase in critical pressure due to crossflow and the breakup capillary number is obtained and validated for different viscosity ratios, surface tension coefficients, contact angles, and drop-to-pore size ratios.
机译:这项研究解决了使用亲水性多孔膜从水中去除油的问题。水包油分散体的有效分离涉及水通过膜的通量高,同时油相的排斥率高。通过求解Navier-Stokes方程,数值研究了跨膜压力和错流速度对不同截面的孔隙排斥油滴和油膜的影响。我们发现,在没有错流的情况下,油滴进入给定表面亲水性的圆形孔所需的临界跨膜压力与基于Young-Laplace方程的分析预测非常吻合。通过对椭圆形和矩形孔上连续油膜的数值模拟,验证了根据孔横截面的几何参数确定的临界压力的解析表达式。随着错流速度的增加,油滴的形状在孔口附近强烈变形,并且渗透的临界压力增加。我们根据跨膜压力和剪切速率,以数字方式确定了液滴排斥,渗透和破裂的相图。渗透的临界压力被确定为分离渗透区和排斥区的线。使用一种新的计算临界压力的方法,我们研究了各种物理和几何参数对剪切流下液滴渗透和破裂的临界压力的影响。数值表明,渗透的临界压力随着剪切速率,粘度比,表面张力系数,接触角和液滴尺寸的增加而增加。另一方面,在较低的表面张力系数,较高的油水粘度比和较大的液滴尺寸的情况下,促进了在孔入口处的液滴破裂。使用简单的力和转矩平衡参数,就可以获得由横流和破碎毛细管数引起的临界压力增加的估计值,并针对不同的粘度比,表面张力系数,接触角和液滴孔径比进行了验证。

著录项

  • 作者

    Darvishzadeh, Tohid.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Environmental engineering.;Petroleum engineering.;Microbiology.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 87 p.
  • 总页数 87
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号