首页> 外文学位 >Molecular Doping of Organic Semiconductors
【24h】

Molecular Doping of Organic Semiconductors

机译:有机半导体的分子掺杂

获取原文
获取原文并翻译 | 示例

摘要

Molecular doping of organic semiconductors is becoming exceedingly important and has led to significant commercial developments in organic electronics, since it allows to overcome performance deficiencies and material limitations.;Increasing attention has recently been placed on using very low concentrations of dopants to eliminate the effect of gap states in organic semiconductors, in order to improve carrier mobility, adjust the energy level alignment at interfaces, and achieve overall better device performance. However, direct spectroscopic observations and quantitative analyses have not been done yet to study the impact of dopants on the density of states of organic semiconductors. Here, by using a combination of electron spectroscopy and carrier transport measurements, we investigate the distribution of valence and gap states in copper phthalocyanine (CuPc) upon the introduction of minute amounts of the p-dopant molybdenum tris[1,2-bis-(trifluoromethyl)ethane-1,2-dithiolene] (Mo(tfd)3). We observe the progressive filling (and deactivation) of the deepest tail states accompanied by a decrease of the hopping transport activation energy by charges introduced by the dopants, as well as a significant broadening of the CuPc density of states. Simulations relate this broadening to the electrostatic and structural disorder induced by the dopant in the CuPc matrix.;Another challenge in this field is n-type doping. Although a variety of stable molecular p-dopants have been developed and successfully deployed in devices, air-stable molecular n-dopants suitable for materials with low electron affinity, which are exceedingly important in a range of applications, are essentially non-existent. We demonstrate a major advance to n-dope very low electron affinity organic semiconductors using cleavable air-stable dimeric dopants. Although the reduction potentials of these host materials are beyond the thermodynamic reach of the dimer's effective reducing strength, photo-activation of the doped system can result in kinetically stable and efficient n-doping. High-efficiency organic light-emitting diodes are fabricated by using electron-transport layers doped in this manner. Our strategy thus enables a new paradigm for using air-stable molecular dopants to improve conductivity in organic semiconductors with very low electron affinity and provide ohmic contacts to these materials regardless of the electrode work function, giving more freedom to device design and optimization.
机译:由于有机半导体的分子掺杂可以克服性能缺陷和材料限制,因此它已变得极为重要,并已导致有机电子领域的重大商业发展。;近来,人们越来越多地关注使用非常低浓度的掺杂剂来消除有机硅的影响。为了改善载流子迁移率,调整界面处的能级对齐并获得总体上更好的器件性能,有机半导体中的带隙态。然而,尚未进行直接的光谱观察和定量分析来研究掺杂剂对有机半导体状态密度的影响。在这里,通过结合使用电子光谱学和载流子传输测量,我们研究了在引入微量的p掺杂三(3​​,1,2)-双钼(1,2-bis-()之后,酞菁铜(CuPc)的价态和间隙态的分布。三氟甲基)乙烷-1,2-二硫代苯基]]>(Mo(tfd)3)。我们观察到最深尾态的逐渐填充(和失活),伴随着掺杂剂引入的电荷使跳跃传输活化能降低,以及态CuPc密度显着扩大。模拟将这种扩展与由CuPc基质中的掺杂剂引起的静电和结构无序相关。该领域的另一个挑战是n型掺杂。尽管已经开发出多种稳定的分子p型掺杂剂并将其成功部署在设备中,但基本上不存在适用于电子亲和力低的材料的空气稳定分子n型掺杂剂,这种材料在许多应用中都极为重要。我们展示了使用可裂解的空气稳定二聚体掺杂剂对n型掺杂非常低的电子亲和力有机半导体的重大进展。尽管这些主体材料的还原电位超出了二聚体有效还原强度的热力学范围,但掺杂体系的光活化可导致动力学稳定且有效的n掺杂。通过使用以这种方式掺杂的电子传输层来制造高效的有机发光二极管。因此,我们的策略为使用空气稳定的分子掺杂剂提高电子亲和力非常低的有机半导体中的电导率提供了新的范例,并且无论电极的工作功能如何,它们都可以与这些材料形成欧姆接触,从而为器件设计和优化提供了更大的自由度。

著录项

  • 作者

    Lin, Xin.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Electrical engineering.;Materials science.;Organic chemistry.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号