首页> 外文学位 >Electrical doping of organic molecular semiconductors.
【24h】

Electrical doping of organic molecular semiconductors.

机译:有机分子半导体的电掺杂。

获取原文
获取原文并翻译 | 示例

摘要

Electrical doping is perceived as a key to enhance the performance and versatility of organic molecular devices. Understanding the doping mechanism and the impact of doping on interface electronic structures is very important for better control of the doping.; We show that an efficient p-doping is a result of a good energy match between the host ionization energy and the dopant electron affinity, via a study of the electronic structure of host and dopant materials using direct and inverse photoemission spectroscopies (UPS/IPES). The hole transport materials zinc phthalocyanine (ZnPc) and N,N-diphenyl-N,N-bis(1-naphthyl)-1,1-biphenyl-4,4-diamine (α-NPD) are used as the host materials, and the strong acceptor material tetrafluorotetracyanoquinodimethane (F4 -TCNQ) is the p-type dopant. In p-doped films, EF moves closer to the HOMO, analogous to inorganic semiconductors. The ultimate position of EF with respect to the HOMO in highly doped film is limited by the large polarization and relaxation in molecular solids, especially in 3-D molecules like α-NPD.; The study of the impact of doping at metal-organic interfaces shows that the interface electronic structure, i.e. interface dipole, ionization energy and EF-HOMO, is nearly independent of doping, although the bulk EF-HOMO of the doped film is determined by the dopant concentration. A depletion region is formed at the interface with its width depending on the dopant concentration similarly as metal-inorganic semiconductor interfaces. This narrow space charge region greatly improves hole injection by several orders of magnitude via tunneling.; The impact of doping on the energy alignment at organic-organic heterojunction interfaces is found to be different compared to MO interfaces. Interface dipoles are generally seen upon doping of one organic material at these weakly interacting OO interfaces, and the electron and hole barriers at the interface are correspondingly modified. The interface dipole is found to be of the value that makes the EF-HOMO in the other undoped organic material fixed. A modified induced density of interface states (IDIS) model is developed and found to give an appropriate understanding of the formation of interface dipole and energy alignment at both MO and OO interfaces.
机译:电掺杂被认为是增强有机分子器件的性能和多功能性的关键。了解掺杂机制以及掺杂对界面电子结构的影响对于更好地控制掺杂非常重要。我们通过使用正向和反向光发射光谱学(UPS / IPES)研究基质和掺杂剂材料的电子结构,表明有效的p掺杂是基质电离能与掺杂剂电子亲和力之间良好的能量匹配的结果。空穴传输材料酞菁锌(ZnPc)和N,N '-二苯基-N,N '-双(1-萘基)-1,1 ' -biphenyl-4,4 -diamine(α-NPD)被用作主体材料,而强受体材料四氟四氰基喹二甲烷(F 4 -TCNQ )是p型掺杂剂。在p掺杂的薄膜中,E F 接近于HOMO,类似于无机半导体。 E F 在高掺杂薄膜中相对于HOMO的最终位置受到分子固体中大的极化和弛豫的限制,特别是在像α-NPD这样的3-D分子中。对金属-有机界面处掺杂的影响的研究表明,界面电子结构,即界面偶极子,电离能和E F -HOMO,几乎与掺杂无关,尽管体中的E F -HOMO由掺杂剂浓度确定。类似于金属-无机半导体界面,在界面处形成耗尽区,耗尽区的宽度取决于掺杂剂浓度。这种狭窄的空间电荷区通过隧穿大大提高了空穴注入几个数量级。发现掺杂对有机-有机异质结界面处的能量取向的影响与MO界面相比是不同的。在这些弱相互作用的OO界面处掺杂一种有机材料时,通常会看到界面偶极子,并且界面处的电子和空穴势垒也相应地被修改。发现界面偶极具有使固定在其他未掺杂有机材料中的E F -HOMO的值。修改后的界面态感应密度(IDIS)模型得到了发展,发现可以对MO和OO界面处的界面偶极子的形成和能量排列提供适当的了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号