...
首页> 外文期刊>Nature >Transition metal-catalysed molecular n-doping of organic semiconductors
【24h】

Transition metal-catalysed molecular n-doping of organic semiconductors

机译:过渡金属催化的有机半导体的分子n掺杂

获取原文
获取原文并翻译 | 示例
           

摘要

Electron doping of organic semiconductors is typically inefficient, but here a precursor molecular dopant is used to deliver higher n-doping efficiency in a much shorter doping time.Chemical doping is a key process for investigating charge transport in organic semiconductors and improving certain (opto)electronic devices(1-9). N(electron)-doping is fundamentally more challenging than p(hole)-doping and typically achieves a very low doping efficiency (eta) of less than 10%(1,10). An efficient molecular n-dopant should simultaneously exhibit a high reducing power and air stability for broad applicability(1,5,6,9,11), which is very challenging. Here we show a general concept of catalysed n-doping of organic semiconductors using air-stable precursor-type molecular dopants. Incorporation of a transition metal (for example, Pt, Au, Pd) as vapour-deposited nanoparticles or solution-processable organometallic complexes (for example, Pd-2(dba)(3)) catalyses the reaction, as assessed by experimental and theoretical evidence, enabling greatly increased eta in a much shorter doping time and high electrical conductivities (above 100 S cm(-1); ref. (12)). This methodology has technological implications for realizing improved semiconductor devices and offers a broad exploration space of ternary systems comprising catalysts, molecular dopants and semiconductors, thus opening new opportunities in n-doping research and applications(12, 13).
机译:有机半导体的电子掺杂通常是低效的,但是在这里,使用前体分子掺杂剂在更短的掺杂时间内提供更高的n掺杂效率。化学掺杂是用于研究有机半导体中电荷输送的关键方法,并改善某些(OPTO)电子设备(1-9)。 n(电子) - 垂直于P(孔)基本上更具挑战性,而且通常达到小于10%(1,10)的非常低的掺杂效率(ETA)。高效的分子N掺杂剂应同时表现出用于广泛适用性(1,5,6,9,11)的高降低功率和空气稳定性,这是非常具有挑战性的。在这里,我们展示了使用空气稳定的前体型分子掺杂剂的有机半导体催化的N掺杂的一般概念。掺入过渡金属(例如,Pt,Au,Pd)作为气相沉积的纳米颗粒或溶液 - 加工的有机金属配合物(例如,Pd-2(dBa)(3))催化反应,如通过实验和理论评估证据,在更短的掺杂时间和高电导率下,使得ETA大大增加(高于100 s cm(-1);参考。(12))。该方法具有用于实现改进的半导体器件的技术意义,并提供包含催化剂,分子掺杂剂和半导体的三元系统的广泛勘探空间,从而在N掺杂研究和应用(12,13)中打开新的机会。

著录项

  • 来源
    《Nature》 |2021年第7883期|67-73|共7页
  • 作者单位

    Southern Univ Sci & Technol SUSTech Dept Mat Sci & Engn Shenzhen Guangdong Peoples R China;

    Linkoping Univ Dept Sci & Technol Lab Organ Elect Norrkoping Sweden;

    Southern Univ Sci & Technol SUSTech Dept Mat Sci & Engn Shenzhen Guangdong Peoples R China;

    Univ Roma La Sapienza Dipartimento Sci Chim Rome Italy|UdR Roma INSTM Rome Italy;

    Southern Univ Sci & Technol SUSTech Dept Mat Sci & Engn Shenzhen Guangdong Peoples R China;

    Flexterra Corp Skokie IL 60077 USA;

    Southern Univ Sci & Technol SUSTech Dept Mat Sci & Engn Shenzhen Guangdong Peoples R China;

    Southern Univ Sci & Technol SUSTech Dept Mat Sci & Engn Shenzhen Guangdong Peoples R China;

    Southern Univ Sci & Technol SUSTech Dept Mat Sci & Engn Shenzhen Guangdong Peoples R China;

    Southern Univ Sci & Technol SUSTech Dept Mat Sci & Engn Shenzhen Guangdong Peoples R China;

    Southern Univ Sci & Technol SUSTech Dept Mat Sci & Engn Shenzhen Guangdong Peoples R China;

    Southern Univ Sci & Technol SUSTech Dept Mat Sci & Engn Shenzhen Guangdong Peoples R China;

    Korea Univ Dept Chem Seoul South Korea;

    Linkoping Univ Dept Sci & Technol Lab Organ Elect Norrkoping Sweden;

    Linkoping Univ Dept Sci & Technol Lab Organ Elect Norrkoping Sweden|Flexterra Corp Skokie IL 60077 USA|Northwestern Univ Dept Chem 2145 Sheridan Rd Evanston IL 60208 USA|Northwestern Univ Mat Res Ctr Evanston IL 60208 USA;

    Southern Univ Sci & Technol SUSTech Dept Mat Sci & Engn Shenzhen Guangdong Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号