首页> 外文学位 >Evaluation of non-functionalized single walled carbon nanotubes composites for bone tissue engineering.
【24h】

Evaluation of non-functionalized single walled carbon nanotubes composites for bone tissue engineering.

机译:骨组织工程非功能化单壁碳纳米管复合材料的评估。

获取原文
获取原文并翻译 | 示例

摘要

Introduction: Bone defects and non-unions caused by trauma, tumor resection, pathological degeneration, or congenital deformity pose a great challenge in the field of orthopedics. Traditionally, these defects have been repaired by using autografts and allografts. Autografts have set the gold standard for clinical bone repair because of their osteoconductivity, osteoinductivity and osteogenicity. Nevertheless, the application of autografts is limited because of donor availability and donor site morbidity. Allografts have the advantage that the tissues are readily available and can be easily applied, especially when large segments of bone are to be reconstructed. However, their use is also limited by the risk of disease transfer and immune rejection. To circumvent these limitations tissue engineering has evolved as a means to develop viable bone grafts. An ideal bone graft should be both osteoconductive and osteoinductive, biomechanically strong, minimally antigenic, and eliminates donor site morbidity and quantity issues. The biodegradable polymer, Poly lactic-co-glycolic acid (PLAGA) was chosen because of its commercial availability, biocompatibility, non-immunogenicity, controlled degradation rate, and its ability to promote optimal cell growth. To improve the mechanical properties of PLAGA, Single Walled Carbon Nanotubes (SWCNT) were used as a reinforcing material to fabricate composite scaffolds. The overall goal of this project is to develop a Single Walled Carbon Nanotube composite (SWCNT/PLAGA) for bone regeneration and to examine the interaction of MC3T3-E1 cells (mouse fibroblasts) and hBMSCs (human bone marrow derived stem cells) with the SWCNT/PLAGA composite via focusing on extracellular matrix production and mineralization; and to evaluate its toxicity and bio-compatibility in-vivo in a rat subcutaneous implant model. We hypothesize that reinforcement of PLAGA with SWCNT to fabricate SWCNT/PLAGA composites increases both the mechanical strength of the composites as well as the cell proliferation rate on the surface of the composites while expressing osteoblasts phenotypic, differentiation and mineralization markers; and SWCNT/PLAGA composites are biocompatible and non-toxic, and are ideal candidates for bone tissue engineering. Methods: PLAGA and SWCNT/PLAGA composites were fabricated with various amounts of SWCNT (5, 10, 20, 40 and 100mg), characterized and degradation studies were performed. PLAGA (poly lactic-co-glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated; characterized and mechanical testing was performed. Cells were seeded and cell adhesion/morphology, growth/survival, proliferation and gene expression analysis were performed to evaluate biocompatibility. Sprague-Dawley rats were implanted subcutaneously with Sham, poly lactic-co-glycolic acid (PLAGA) and SWCNT/PLAGA composites, and sacrificed at 2, 4, 8 and 12 week post-implantation. The animals were observed for signs of morbidity, overt toxicity, weight gain, food consumption, hematological and urinalysis parameters, and histopathology.;Results: Imaging studies demonstrated uniform incorporation of SWCNT into the PLAGA matrix and addition of SWCNT did not affect the degradation rate. Composites with 10mg SWCNT resulted in highest rate of cell proliferation (p<0.05) among all composites. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of 10mg SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3-E1 cells adhered, grew/survived, and exhibited normal, non-stressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared to PLAGA. No mortality and clinical signs were observed. All the groups showed consistent weight gain and rate-of-gain for each group was similar. All the groups exhibited similar pattern for food consumption. No difference in urinalysis parameters, hematological parameters; and absolute and relative organ weight was observed. A mild to moderate summary toxicity (sumtox) score was observed for animals treated with the PLAGA and SWCNT/PLAGA whereas the sham animals did not show any response. At all the time intervals both PLAGA and SWCNT/PLAGA showed a significantly higher sumtox score compared to the Sham group. However, there was no significant difference between PLAGA and SWCNT/PLAGA groups.;Conclusion: Our SWCNT/PLAGA composites, which possess high mechanical strength and mimic the microstructure of human trabecular bone, displayed tissue compatibility similar to PLAGA, a well known biocompatible polymer over the 12 week study. Thus, the results obtained demonstrate the potential of SWCNT/PLAGA composites for application in BTE and musculoskeletal regeneration. Future studies will be designed to evaluate the efficacy of SWCNT/PLAGA composites in bone regeneration in a non-union ulnar bone defect rabbit model. As interest in carbon nanotube technology increases, studies must be performed to fully evaluate these novel materials at a nonclinical level to assess their safety. The ability to produce composites capable of promoting bone growth will have a significant impact on tissue regeneration and will allow greater functional recovery in injured patients.
机译:简介:外伤,肿瘤切除,病理性变性或先天性畸形引起的骨缺损和不愈合,在整形外科领域提出了巨大的挑战。传统上,这些缺陷已通过使用自体移植和同种异体移植修复。自体移植物的骨传导性,骨诱导性和成骨性为临床骨修复树立了金标准。然而,由于供体的可获得性和供体部位的发病率,自体移植的应用受到限制。同种异体移植的优点是组织容易获得并且可以容易地应用,特别是在要重建大块骨头时。但是,它们的使用也受到疾病转移和免疫排斥的风险的限制。为了克服这些限制,组织工程已经发展成为开发可行的骨移植物的手段。理想的骨移植物应兼具骨传导性和骨诱导性,生物力学强度强,抗原性最低,并且应消除供体部位的发病率和数量问题。选择可生物降解的聚合物,聚乳酸-乙醇酸共聚物(PLAGA),是因为其具有商业上的可利用性,生物相容性,非免疫原性,受控的降解速率以及促进最佳细胞生长的能力。为了提高PLAGA的机械性能,单壁碳纳米管(SWCNT)被用作制造复合支架的增强材料。该项目的总体目标是开发用于骨骼再生的单壁碳纳米管复合材料(SWCNT / PLAGA),并研究MC3T3-E1细胞(小鼠成纤维细胞)和hBMSC(人类骨髓衍生干细胞)与SWCNT的相互作用/ PLAGA复合材料,专注于细胞外基质的产生和矿化;并评估其在大鼠皮下植入模型中的毒性和体内生物相容性。我们假设,用SWCNT增强PLAGA来制造SWCNT / PLAGA复合材料既增加了复合材料的机械强度,又增加了复合材料表面的细胞增殖速率,同时表达了成骨细胞的表型,分化和矿化标记。和SWCNT / PLAGA复合材料具有生物相容性且无毒,是骨组织工程的理想候选材料。方法:用不同数量的SWCNT(5、10、20、40和100mg)制备PLAGA和SWCNT / PLAGA复合材料,进行表征和降解研究。制备了PLAGA(聚乳酸-乙醇酸共聚物)和SWCNT / PLAGA微球及复合材料;表征并进行了机械测试。接种细胞并进行细胞粘附/形态,生长/存活,增殖和基因表达分析以评估生物相容性。在Sprague-Dawley大鼠中皮下植入Sham,聚乳酸-乙醇酸(PLAGA)和SWCNT / PLAGA复合材料,并在植入后2、4、8和12周处死。观察动物的发病迹象,明显的毒性,体重增加,食物消耗,血液学和尿液分析参数以及组织病理学。结果:影像学研究表明,SWCNT均匀地掺入PLAGA基质中,并且添加SWCNT不会影响降解速率。 。在所有复合物中,含10mg SWCNT的复合物导致细胞增殖率最高(p <0.05)。成像研究表明,微球具有均匀的形状和光滑的表面,并且SWCNT均匀地掺入PLAGA基质中。微球以无规则堆积的方式粘合,同时保持间距,因此类似于松质骨的小梁。添加10mg SWCNT会导致更大的压缩模量和极限压缩强度。成像研究表明,MC3T3-E1细胞粘附,生长/存活,并在复合材料上表现出正常的,无应力的形态。与PLAGA相比,SWCNT / PLAGA复合材料表现出更高的细胞增殖速率和基因表达。没有观察到死亡率和临床体征。所有组均显示出一致的体重增加,并且每组的增重率相似。所有组的食物消费模式相似。尿液分析参数,血液学参数无差异;并观察绝对和相对器官重量。对于用PLAGA和SWCNT / PLAGA治疗的动物,观察到轻度至中度的总毒性(sumtox)评分,而对假动物没有任何反应。与假手术组相比,在所有时间间隔内,PLAGA和SWCNT / PLAGA的总和得分均显着更高。结论:我们的SWCNT / PLAGA复合材料具有很高的机械强度并模仿人的小梁骨的微观结构,其组织相容性与众所周知的生物相容性聚合物PLAGA相似。在12周的研究中。从而,所获得的结果证明了SWCNT / PLAGA复合材料在BTE和肌肉骨骼再生中的应用潜力。将设计进一步的研究,以评估SWCNT / PLAGA复合材料在非骨尺骨缺损兔模型中的骨再生功效。随着对碳纳米管技术的兴趣增加,必须进行研究以在非临床水平上全面评估这些新型材料,以评估其安全性。产生能够促进骨骼生长的复合材料的能力将对组织再生产生重大影响,并使受伤患者的功能恢复更大。

著录项

  • 作者

    Gupta, Ashim.;

  • 作者单位

    Southern Illinois University at Carbondale.;

  • 授予单位 Southern Illinois University at Carbondale.;
  • 学科 Engineering Biomedical.;Engineering Materials Science.;Biology Molecular.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号