首页> 外文学位 >The Homologous Recombination Gene, RAD59, is a Determinant of Genome Stability in Saccharomyces cerevisiae.
【24h】

The Homologous Recombination Gene, RAD59, is a Determinant of Genome Stability in Saccharomyces cerevisiae.

机译:同源重组基因RAD59是酿酒酵母基因组稳定性的决定因素。

获取原文
获取原文并翻译 | 示例

摘要

Rad59 is a DNA repair protein involved in double-strand break repair (DSBR) by homologous recombination (HR) in Saccharomyces cerevisiae. Rad59 aids the central HR protein, Rad52, in multiple mechanisms of HR. Rad59 shares sequence homology with the N terminus of Rad52. We previously made mutations in highly conserved residues in a conserved domain between Rad59 and Rad52, including rad59-Y92A, rad59-K166A, rad59-K174A, and rad59-F180A. The rad59-K166A, rad59-K174A, and rad59-F180A mutations reside within the same &agr;-helical domain that is thought to be important for DNA binding. The rad59-Y92A mutation resides in a separate loop domain. Co-immunoprecipitation (Co-IP) studies established that Rad59 works with Rad52 through their direct interaction. The Rad59-Y92A and Rad59-K166A mutant proteins disturb their physical interaction with Rad52. Chromatin immunoprecipitation (ChIP) analysis revealed that flag-tagged Rad52 associates with induced DSBs. This association is inhibited in the presence of the rad59-null and rad59-K166A mutant alleles, but is stimulated in the presence of rad59-Y92A. Epistasis analysis revealed that the rad59-K166A and rad59-Y92A mutations confer distinct genetic effects on single-strand annealing (SSA), a non-conservative mechanism of HR. Taken together, these findings indicate that the rad59 mutations have distinct effects that are consistent with the separation-of-function of Rad59 in HR.;Rad59 has also been implicated in the recovery of telomerase-deficient yeast cells from the viability loss associated with senescence. Senescence is the point at which cells stop dividing. This process is associated with the gradual loss of chromosome ends, called the telomere. Some human cells, including germ and stem cells (and wild-type yeast cells), express an enzyme called telomerase that extends telomere ends. Telomerase is inactivated in the majority of somatic cells, however, leaving them vulnerable to telomere loss and senescence. This makes telomerase-deficient yeast cells an excellent system to examine processes involved in telomere loss and senescence. Rad52-dependent HR is required for cells to rebuild their telomeres and recover from senescence. Rad59 aids Rad52 in this process by one mechanism of HR (Type II).;Nearly two decades have passed since the discovery of Rad59, yet the mechanism for how Rad59 works with Rad52 in multiple contexts of HR remains largely unknown. Therefore, this work aimed to better define the mechanism of Rad59 in HR in response to DSBs induced in two distinct, biologically relevant, contexts: 1) in response to spontaneous replication lesions in cells defective for lagging strand synthesis, and 2) in response to the lesions associated with gradual telomere loss during senescence.;To address the role of Rad59 in the HR-dependent recovery of cells from spontaneous replication failure, rad59 mutant strains were crossed with a rad27 null mutant to examine the effects of the rad59 alleles on the link between viability, growth and the stimulation of homologous recombination in replication-defective cells. Like the rad59 null allele, rad59-K166A was synthetically lethal in combination with rad27. The rad59-K174A and rad59-F180A alleles were not synthetically lethal in combination with rad27, had effects on growth that coincided with decreased ectopic gene conversion, but did not affect mutation, unequal sister-chromatid recombination, or loss of heterozygosity. The rad59-Y92A allele was not synthetically lethal when combined with rad27, stimulated ectopic gene conversion and heteroallelic recombination independently from rad27, and was mutually epistatic with srs2..;To address the role of Rad59 in the HR-dependent recovery of telomerase-deficient cells from senescence, mutant strains containing the rad59 &agr;-helical domain mutations were crossed with est2-null cells defective for telomerase. The kinetics of the descent into and recovery from senescence were then monitored in liquid culture. Southern blot analysis was subsequently used to measure the recombination-dependent recovery of telomeres. The est2Deltarad59-double mutant cells displayed a severity gradient in both the descent into senescence and recovery of telomeres by HR that mirrored those in response to spontaneous replication failure: rad59-K166A was the most defective, rad59-F180A was the next most defective, and rad59-K174A was the least defective of the mutations. This severity defect was consistent with the pattern of telomere recovery observed in Southern blots: est2Deltarad59-K166A cells recovered by the same mechanism as est2Deltarad59Delta cells with no functional Rad59 (Type I), whereas the est2Deltarad59-K174A and est2Deltarad59-Y92A cells recovered by another mechanism that requires Rad59 (Type II). Genetic analysis of the est2Deltarad51Deltarad59-triple mutant cells revealed that RAD59 works with RAD51 in the recovery of telomeres by HR.;These studies were the first to employ rad59 mutations to directly investigate the ability of cells to recover from spontaneous replication failure by HR. The data gathered directly implicates RAD59-dependent HR, and not just the HR apparatus, in the repair of DNA lesions that block growth. Additionally, epistasis analysis provided evidence that RAD59 works with RAD51 and SRS2 to mediate the recombination-dependent repair of spontaneous replication lesions. These data establish that RAD59 plays a role in promoting and limiting HR driven by replication failure, suggesting that both are required to facilitate growth and limit genome instability. Furthermore, these were the first studies to use rad59 mutations to investigate the role of RAD59 in the survival of telomerase-deficient cells from senescence-associated viability loss. The data gathered demonstrate, for the first time, that RAD59 works with RAD51 in the recovery of telomeres by HR. Taken together, these findings significantly enhance our understanding of the role the HR factor, Rad59, plays in the maintenance of genome stability in multiple biological contexts.
机译:Rad59是一种DNA修复蛋白,通过酿酒酵母中的同源重组(HR)参与双链断裂修复(DSBR)。 Rad59在多种HR机制中辅助中央HR蛋白Rad52。 Rad59与Rad52的N末端共享序列同源性。我们先前在Rad59和Rad52之间的保守域中的高度保守残基中进行了突变,包括rad59-Y92A,rad59-K166A,rad59-K174A和rad59-F180A。 rad59-K166A,rad59-K174A和rad59-F180A突变位于同一α-螺旋结构域内,该结构域对DNA结合很重要。 rad59-Y92A突变位于单独的环域中。共同免疫沉淀(Co-IP)研究确定Rad59通过直接相互作用与Rad52协同工作。 Rad59-Y92A和Rad59-K166A突变蛋白干扰了它们与Rad52的物理相互作用。染色质免疫沉淀(ChIP)分析显示,带有标记的Rad52与诱导的DSB相关。在rad59-null和rad59-K166A突变等位基因的存在下,这种结合受到抑制,但是在rad59-Y92A的存在下,这种结合受到刺激。上位性分析表明,rad59-K166A和rad59-Y92A突变对HR的非保守机制单链退火(SSA)具有明显的遗传效应。综上所述,这些发现表明rad59突变具有与HR中Rad59的功能分离相一致的独特作用。Rad59还与端粒酶缺陷型酵母细胞从衰老相关的活力丧失中的恢复有关。 。衰老是细胞停止分裂的时刻。这个过程与逐渐消失的染色体末端有关,称为端粒。一些人类细胞,包括生殖细胞和干细胞(以及野生型酵母细胞),表达一种称为端粒酶的酶,该酶可延伸端粒末端。端粒酶在大多数体细胞中均失活,但使它们易受端粒丢失和衰老的影响。这使得端粒酶缺陷型酵母细胞成为检查端粒丢失和衰老过程的极好系统。细胞重建其端粒并从衰老中恢复需要Rad52依赖的HR。 Rad59通过一种人力资源机制(II型)在此过程中辅助Rad52。自Rad59被发现以来已经过去了近二十年,但是在多种人力资源环境中Rad59如何与Rad52协同工作的机制仍然未知。因此,这项工作旨在更好地定义在两种不同的,生物学相关的背景下诱导的DSB响应中,HR的Rad59的机制:1)响应落后于链合成的缺陷细胞的自发复制损伤,以及2)响应为了解决Rad59在自发复制失败中HR依赖的细胞恢复中的作用,将rad59突变菌株与rad27无效突变体杂交,以研究rad59等位基因对细胞衰老的影响。复制缺陷细胞的活力,生长与同源重组刺激之间的联系像rad59无效等位基因一样,rad59-K166A与rad27联合使用具有致命的杀伤力。 rad59-K174A和rad59-F180A等位基因与rad27不具有合成致死性,对生长的影响与异位基因转化降低同时发生,但不影响突变,不平等的姐妹染色单体重组或杂合性丧失。 rad59-Y92A等位基因与rad27结合时不具有合成致死性,独立于rad27刺激异位基因转化和异源等位基因重组,并且与srs2互为上位基因。在细胞衰老后,含有rad59α-螺旋结构域突变的突变菌株与端粒酶缺陷的est2-null细胞杂交。然后在液体培养物中监测下降到衰老的动力学和从衰老恢复的动力学。随后使用Southern印迹分析来测量端粒的重组依赖性恢复。 est2Deltarad59-double突变型细胞在HR进入端粒衰老和端粒恢复中均显示出严重度梯度,这反映了对自发复制失败的响应:rad59-K166A是最缺陷的,rad59-F180A是次缺陷的,并且rad59-K174A是突变中缺陷最少的。这种严重程度的缺陷与在Southern印迹中观察到的端粒恢复模式一致:est2Deltarad59-K166A细胞通过与est2Deltarad59DeltaDelta细胞无功能Rad59(I型)相同的机制恢复,而est2Deltarad59-K174A和est2Deltarad59-Y92A细胞则通过需要Rad59的另一种机制(II型)恢复。对est2Deltarad51Deltarad59-triple三重突变细胞的遗传分析表明,RAD59与RAD51在HR端粒修复中协同作用;这些研究是首次利用rad59突变直接研究细胞从HR自发复制失败中恢复的能力。收集的数据直接与RAD59依赖的HR有关,而不仅仅是与HR仪器有关,可以修复阻止生长的DNA损伤。此外,上位性分析提供了证据,证明RAD59与RAD51和SRS2协同调节自发复制病变的重组依赖性修复。这些数据表明,RAD59在促进和限制由复制失败驱动的HR中发挥作用,表明两者都需要促进生长和限制基因组不稳定性。此外,这些是第一个使用rad59突变来研究RAD59在端粒酶缺陷型细胞衰老相关的存活中的作用的研究。收集到的数据首次证明RAD59与RAD51在HR端粒修复中协同作用。综上所述,这些发现显着增强了我们对HR因子Rad59在多种生物学环境中维持基因组稳定性中所起的作用的理解。

著录项

  • 作者

    Liddell, Lauren C.;

  • 作者单位

    City of Hope's Irell & Manella Graduate School of Biomedical Sciences.;

  • 授予单位 City of Hope's Irell & Manella Graduate School of Biomedical Sciences.;
  • 学科 Biology Molecular.;Biology Genetics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 S-4;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号