首页> 外文学位 >Digital pharmacovigilance: The MedWatcher system for monitoring adverse events through automated processing of Internet social media and crowdsourcing.
【24h】

Digital pharmacovigilance: The MedWatcher system for monitoring adverse events through automated processing of Internet social media and crowdsourcing.

机译:数字药物警戒:MedWatcher系统,用于通过自动处理Internet社交媒体和众包来监视不良事件。

获取原文
获取原文并翻译 | 示例

摘要

Half of Americans take a prescription drug, medical devices are in broad use, and population coverage for many vaccines is over 90%. Nearly all medical products carry risk of adverse events (AEs), sometimes severe. However, pre-approval trials use small populations and exclude participants by specific criteria, making them insufficient to determine the risks of a product as used in the population. Existing post-marketing reporting systems are critical, but suffer from underreporting. Meanwhile, recent years have seen an explosion in adoption of Internet services and smartphones. MedWatcher is a new system that harnesses emerging technologies for pharmacovigilance in the general population. MedWatcher consists of two components, a text-processing module, MedWatcher Social, and a crowdsourcing module, MedWatcher Personal. With the natural language processing component, we acquire public data from the Internet, apply classification algorithms, and extract AE signals. With the crowdsourcing application, we provide software allowing consumers to submit AE reports directly.;Our MedWatcher Social algorithm for identifying symptoms performs with 77% precision and 88% recall on a sample of Twitter posts. Our machine learning algorithm for identifying AE-related posts performs with 68% precision and 89% recall on a labeled Twitter corpus. For zolpidem tartrate, certolizumab pegol, and dimethyl fumarate, we compared AE profiles from Twitter with reports from the FDA spontaneous reporting system, We find some concordance (Spearman's rho = 0.85, 0.77, 0.82, respectively, for symptoms at MedDRA System Organ Class level). Where the sources differ, milder effects are overrepresented in Twitter. We also compared post-marketing profiles with trial results and found little concordance.;MedWatcher Personal saw substantial user adoption, receiving 550 AE reports in a one-year period, including over 400 for one device, Essure. We categorized 400 Essure reports by symptom, compared them to 29 reports from the FDA spontaneous reporting system, and found high concordance (rho = 0.65) using MedDRA Preferred Term granularity. We also compared Essure Twitter posts with MedWatcher and FDA reports, and found rho = 0.25 and 0.31 respectively.;MedWatcher represents a novel pharmacoepidemiology surveillance informatics system; our analysis is the first to compare AEs across social media, direct reporting, FDA spontaneous reports, and pre-approval trials.
机译:一半的美国人服用处方药,医疗器械得到广泛使用,许多疫苗的人口覆盖率超过90%。几乎所有医疗产品都带有不良事件(AE)的风险,有时甚至很严重。但是,批准前的试验使用的人群较小,并且按特定标准排除了参与者,这使得他们不足以确定人群中使用的产品的风险。现有的上市后报告系统很关键,但报告不足。同时,近年来,互联网服务和智能手机的使用呈爆炸式增长。 MedWatcher是一个新系统,可利用新兴技术为普通人群提供药物警戒。 MedWatcher由两个组件组成,一个是文本处理模块MedWatcher Social,另一个是众包模块MedWatcher Personal。利用自然语言处理组件,我们可以从Internet获取公共数据,应用分类算法,并提取AE信号。借助众包应用程序,我们提供了允许消费者直接提交AE报告的软件。我们的MedWatcher Social算法(用于识别症状)在Twitter帖子样本中的准确率达到77%,召回率达到88%。我们用于识别与AE相关的帖子的机器学习算法在带有标签的Twitter语料库上具有68%的精度和89%的回忆率。对于酒石酸唑吡坦,赛妥珠单抗和富马酸二甲酯,我们将Twitter的AE配置文件与FDA自发报告系统的报告进行了比较,我们发现一些一致性(在MedDRA系统器官分类级别上,Spearman的rho分别为0.85、0.77、0.82)。 )。在消息来源不同的地方,温和的影响在Twitter中被过度代表。我们还将上市后的配置文件与试用结果进行了比较,并发现不一致之处; MedWatcher Personal看到了相当多的用户采用率,在一年的时间内收到550份AE报告,其中包括一台Essure设备超过400份。我们按症状分类了400份Essure报告,将它们与FDA自发报告系统的29份报告进行了比较,并使用MedDRA Preferred Term粒度发现了高度一致(rho = 0.65)。我们还将Essure Twitter帖子与MedWatcher和FDA报告进行了比较,发现rho分别为0.25和0.31。我们的分析是第一个在社交媒体,直接报告,FDA自发报告和批准前试验中比较不良事件的方法。

著录项

  • 作者

    Freifeld, Clark C.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Computer Science.;Health Sciences Epidemiology.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号