首页> 外文学位 >Nanoscale Strontium Titanate Sheets and Crystals
【24h】

Nanoscale Strontium Titanate Sheets and Crystals

机译:纳米级钛酸锶片和晶体

获取原文
获取原文并翻译 | 示例

摘要

The physical properties of materials are dominated by their structure and composition. Insight into the structure of complex oxide materials has the potential to improve our understanding and eventually control of their physical properties. This PhD thesis reports the development of characterization and fabrication techniques relevant to improving the scientific understanding of complex oxide materials. The work presented here has two components. I report a way to use ideas that were originally developed in semiconductor processing to control the elastic strain state and crystallization process of the model complex oxide SrTiO3. An additional component is an important series of advances in the analysis of diffraction patterns acquired with focused x-ray nanobeams.;The fabrication and characterization of nanoscale SrTiO3 has been experimentally shown to allow the introduction of elastic strain into SrTiO3. The creation of thin SrTiO3 crystals from (001)-oriented SrTiO3 bulk single crystals using focused ion beam milling techniques yields sheets with submicron thickness and arbitrary orientation within the (001) plane. Synchrotron x-ray nanodiffraction experiments show that the SrTiO 3 sheets have rocking curves with angular widths less than 0.02°. These widths are less than a factor of two larger than bulk SrTiO3, which shows that the sheets are suitable substrates for epitaxial thin film growth. A precisely selected elastic strain can be introduced into the SrTiO 3 sheets using a silicon nitride stressor layer. Synchrotron x-ray nanodiffraction studies show that the strain introduced in the SrTiO3 sheets is on the order of 10--4, matching the predictions of an elastic model. This approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect not achievable in heteroepitaxy on rigid substrates.;An additional fabrication technique is also evaluated here based on the crystallization of SrTiO3 from initially amorphous thin films. This process is known as solid-phase epitaxy in two-dimensional samples but is just beginning to be explored in more complex geometries. I report experiments in both homoepitaxy and heteroepitaxy including measurements of crystal growth rates and the crystallographic orientations of crystals formed in this way. The lateral growth rates are consistent with previously measured vertical growth. This result indicated that previous work on vertical solid-phase epitaxy could be extended into lateral solid-phase epitaxy, which has the power to be applied to complicated non-planar geometries.;The highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale structural characterization of materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. I report here a series of methods that expand the range of physical problems that can be accurately captured by coherent x-ray optical simulations. My approach has been to expand simulations methods to include arbitrary x-ray incident angles and arbitrary epitaxial heterostructures. I first applied these methods to extract the misorientation of lattice planes and the strain of individual layers of Si/SiGe heterostructures relevant to applications in quantum electronics. Further applications reported in this thesis are in probing defects created in the processing of SrTiO3 and in measuring the change in lattice parameter introduced into strained SrTiO3 sheets. The systematic interpretation of nanobeam diffraction patterns aids in the fabrication of SrTiO3 nanostructures.
机译:材料的物理特性主要由其结构和组成决定。深入了解复杂氧化物材料的结构有可能增进我们的理解,并最终控制其物理性质。该博士论文报道了与提高对复杂氧化物材料的科学理解有关的表征和制造技术的发展。这里介绍的工作有两个部分。我报告了一种方法,该方法可以使用最初在半导体加工中开发的思想来控制模型复合氧化物SrTiO3的弹性应变状态和结晶过程。另一个组成部分是分析聚焦X射线纳米束获得的衍射图谱方面的一系列重要进展。实验证明,纳米级SrTiO3的制备和表征可以将弹性应变引入SrTiO3。使用聚焦离子束铣削技术从(001)取向的SrTiO3块状单晶中生成薄SrTiO3晶体,可得到厚度在(001)平面内的亚微米级薄板。同步加速器X射线纳米衍射实验表明,SrTiO 3片材的摇摆曲线的角度宽度小于0.02°。这些宽度小于SrTiO 3体积的两倍,这表明该片是外延薄膜生长的合适基底。可以使用氮化硅应力源层将精确选择的弹性应变引入SrTiO 3板中。同步加速器X射线纳米衍射研究表明,SrTiO3片材中引入的应变约为10--4,与弹性模型的预测相符。这种在复杂氧化物中共享弹性应变的方法允许在较宽且连续的值范围内选择应变,这是在刚性基材上异质外延无法实现的效果。在此,还根据SrTiO3的结晶工艺评估了一种附加的制造技术。最初是非晶薄膜。此过程在二维样本中被称为固相外延,但刚刚开始在更复杂的几何形状中进行探索。我报告了均质和异质性的实验,包括晶体生长速率和以此方式形成的晶体的晶体学取向的测量。横向增长率与先前测得的纵向增长率一致。这个结果表明,以前关于垂直固相外延的工作可以扩展到横向固相外延,这有能力应用于复杂的非平面几何形状。 x射线光源可以对材料进行纳米级结构表征,但在衍射和散射图样的解释方面却面临重大挑战。我在这里报告了一系列方法,这些方法扩展了可以通过相干X射线光学模拟准确捕获的物理问题的范围。我的方法是将模拟方法扩展到包括任意X射线入射角和任意外延异质结构。我首先应用这些方法来提取晶格平面的取向错误以及与量子电子学中的应用有关的Si / SiGe异质结构的各个层的应变。本论文报道的进一步应用是在探测SrTiO3的加工过程中产生的缺陷以及测量引入应变SrTiO3片材的晶格参数的变化。纳米束衍射图的系统解释有助于SrTiO3纳米结构的制造。

著录项

  • 作者

    Tilka, Jack Andrew.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Materials science.;Engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号