首页> 外文学位 >Exploring Density Incorporation in Inverse Radiotherapy Optimization
【24h】

Exploring Density Incorporation in Inverse Radiotherapy Optimization

机译:在反放射治疗优化中探索密度纳入

获取原文
获取原文并翻译 | 示例

摘要

Inverse radiotherapy optimization is based on a cost function that tries to minimize the radiation dose to volumes within a patient's body. This dissertation explores the incorporation of electron/physical density information into the cost function. This can be termed dose-mass-based (DM) inverse optimization, as mass is the product of density and volume. Another approach for incorporating density in the optimization objective function is Energy-based optimization, where density is utilized to minimize energy deposition in mass (i.e. integral dose). The explorations herein included the investigation of sensitivity of mass-based inverse optimization with varying intensity modulation delivery parameters. The results of the study demonstrated that Energy optimization was significantly more sensitive than DM and dose-volume-based (DV) with respect to changes to both maximum segments per beam and minimum segment area. The second investigation considered the anatomical changes that occur to patients during radiotherapy. The dose-mass changes were compared between the planning CT and subsequent CTs, obtained mid-treatment and post-treatment. The results demonstrated that significant changes to dose-mass only occur for the target volumes and no statistically significant changes were observed for the surrounding normal anatomical structures. Another comparison was performed among plans developed with DV, DM, and Energy. The results showed that the anatomical changes yielded comparable differences regardless of the type of optimization used. Since density information is included in DM and Energy, plans the results suggest that the volumetric changes that occur dominate the density changes within the volumes.;Under a third investigation, software tools were developed in order to calculate generalized equivalent uniform dose (gEUDs) and mass-weighted equivalent uniform dose (mgEUDs). mgEUD is mathematically more general than gEUD and in uniform-density media mgEUD transforms into gEUD. Incorporating physical density into the gEUD allows for a mass-weighted value representative of the uniform dose given to the mass rather than the volume. To further explore mgEUD patient outcome data for xerostomia of parotids and pneumonitis of lungs was used to correlate complication to mgEUD and in turn compare it to gEUD. The investigation determined that mgEUD values for the parotids did not show significant differences with respect to those of gEUD. In turn, lung mgEUD values demonstrated higher differences compared to values of gEUD. For radiation-induced pneumonitis of grade one and greater mgEUD showed lower standard deviations than those of gEUD. However, these differences did not translate into a better probability model of complication. The observed differences between gEUD and mgEUD using the Lyman-Kutcher-Burman normal tissue complication model were in the range of 2-3% for doses greater than 10 Gy.;Incorporating density in inverse optimization plays a role in avoiding higher-density areas. This dissertation concluded that changes in inverse optimization delivery parameters indicated differences between volume-based and mass-based optimizations, but differences were not observed due to anatomical changes during radiotherapy treatment. The introduction of mgEUD demonstrated that there are differences in lungs with respect to gEUD and further investigation of normal tissue complication models may reveal a valuable correlation with treatment-related toxicity.
机译:放射疗法的逆向优化基于成本函数,该函数试图将放射剂量最小化到患者体内的体积。本文探讨了将电子/物理密度信息纳入成本函数的问题。由于质量是密度和体积的乘积,因此这可以称为基于剂量质量(DM)的逆向优化。将密度合并到优化目标函数中的另一种方法是基于能量的优化,其中利用密度来最小化质量中的能量沉积(即积分剂量)。本文的探索包括研究具有变化的强度调制传递参数的基于质量的逆优化的敏感性。研究结果表明,就每束最大段和最小段面积的变化而言,能量优化比DM和基于剂量-体积(DV)的灵敏度明显更高。第二项研究考虑了放疗期间患者发生的解剖学变化。比较计划中的CT和后续CT的剂量质量变化,得出治疗中期和治疗后期。结果表明,剂量质量仅发生在目标体积上的显着变化,而周围正常解剖结构未观察到统计学上的显着变化。在使用DV,DM和Energy开发的计划之间进行了另一个比较。结果表明,无论使用哪种优化类型,解剖学变化都会产生可比的差异。由于密度信息包含在DM和Energy中,因此计划结果表明发生的体积变化主导着体积内的密度变化。;在第三次调查中,开发了软件工具来计算广义等效剂量(gEUD)和质量加权等效均匀剂量(mgEUDs)。 mgEUD在数学上比gEUD更通用,并且在均匀密度介质中,mgEUD转换为gEUD。将物理密度纳入gEUD可以得到质量加权值,该值代表了分配给质量而不是体积的均匀剂量。为了进一步探讨mgEUD,将腮腺口干症和肺部肺炎患者的结局数据用于将并发症与mgEUD相关联,然后将其与gEUD进行比较。调查确定腮腺的mgEUD值与gEUD的值没有显着差异。反过来,与gEUD的值相比,肺mgEUD值显示出更高的差异。对于辐射诱发的1级肺炎,mgEUD值较高,其标准差比gEUD值低。但是,这些差异并未转化为更好的并发症概率模型。使用Lyman-Kutcher-Burman正常组织并发症模型观察到的gEUD和mgEUD之间的差异在剂量大于10 Gy时在2-3%范围内。在逆向优化中引入密度在避免高密度区域中起作用。本文得出的结论是,逆优化传递参数的变化表明基于体积的优化和基于质量的优化之间存在差异,但由于放疗期间的解剖学变化而未观察到差异。 mgEUD的引入表明,就gEUD而言,肺部存在差异,对正常组织并发症模型的进一步研究可能显示出与治疗相关毒性的宝贵关联。

著录项

  • 作者单位

    University of Miami.;

  • 授予单位 University of Miami.;
  • 学科 Therapy.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号