首页> 外文学位 >Role of Residential and Commercial Sectors in Meeting California's 80 Percent GHG Emissions Reduction Goal by 2050.
【24h】

Role of Residential and Commercial Sectors in Meeting California's 80 Percent GHG Emissions Reduction Goal by 2050.

机译:到2050年,住宅和商业部门在实现加州80%的温室气体减排目标中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Climate change is one of the most important issues in today's world, and there is an increasing concern about it. State of California is the leading states in the United States in cutting greenhouse gas (GHG) emissions; it sets an objective of achieving 1990 emission level by 2020 and also long-term objective of emission reduction to 80% of 1990 level by 2050. Short-term policies and necessary steps to take in the short term are well-defined, and California is on the right track of achieving 2020 goal.;There are many energy models developed for California. However, they either do not address cost implications of GHG mitigation in California or lack system modeling approach. These models cannot analyze abatement costs explicitly, consider interactive policies between different sectors of the economy or optimally allocate financial/physical resources. CA-TIMES is the first model that explicitly calculates the cost of mitigation, taken into account different sectors of energy system and their interactions and finds the optimal allocation of money/resources to reach policy target.;The residential and commercial sectors are modeled based on projected energy service demands that are independent of technology and fuels. The residential sector consists of end-use demand technologies used to satisfy thirteen residential end-use service demand, including space heating, space cooling, water heating, lighting, cooking, refrigeration, clothes washing, clothes drying, dish washing, freezer, TV, pool pumps, and miscellaneous. Likewise, the commercial sector end-use demand technologies comprise cooking, lighting, water heating, refrigeration, space cooling and heating, ventilation, office equipment and miscellaneous which are used in our model to satisfy service demand. The model is described by fuel types (e.g. natural gas, electricity, LPG) and end-use technologies (e.g. compact fluorescent lamps, furnace, TV) that meet these service demands. The energy service demands are projected based on assumed drivers that are population, building size, building heating/cooling coefficient, appliance saturation rate, appliance utilization rate and commercial floorspace. Future technology adoption and abatement rely on economic factors (including fuel price changes), consumer choices, technology availability, and policy choices to determine the total state-wide residential and commercial energy use over the time horizon. The model selects technologies to meet energy service demand while minimizing net system cost and satisfying other user-defined constraints such as policy goals in GHG emission targets, appliance efficiency standards, etc. The BAU policy assumes the existing policies do not expire, and they will continue throughout the modeling period until 2050. In the GHG reduction scenario, it is assumed there is a linear carbon cap constraint in addition to the available policies in the BAU scenario. The linear carbon cap assumes the carbon cap would be a straight-line trajectory from 2020 to 2050. CA-TIMES also can be used as a partial equilibrium model. Meaning that service demands are not fixed, and they can be changed based on the elasticities of service demands to their price each year. Under this framework, the model minimizes the welfare loss associated with the change in the service demand. The GHG reduction scenario that runs under this framework is called the GHG-Elastic demand scenario.;The residential and commercial sectors show substantial efficiency improvements and reductions in the final energy demand due to the adoption of more efficient technologies as well as technologies that rely on electricity more than natural gas. In 2010, electricity accounted for 57% of commercial energy use and 37% of residential energy consumption. By 2050, electricity's share of final energy is 67% in the commercial sector and 79% in the residential sector under the GHG reduction scenario. Overall, weighted efficiency for commercial and residential sectors is 2.3 and 3.89 times higher in 2050 relative to 2010 in the GHG reduction scenario, respectively. The model can reduce service demand instead of adopting efficient appliances to decrease GHG emissions in the GHG-Elastic demand scenario, which also lead to significant cost saving. So, weighted efficiency improvement for commercial and residential sectors in the GHG-Elastic demand scenario reduces to 2.21 and 3.55 in 2050, respectively. The model do not invest in ground source heat pumps, efficient electric water heaters and other efficient technologies, which are also expensive, to decrease GHG emissions. Instead, the model reduces service demand in various service demands to decrease emissions and abatement costs.;Electrification of buildings is interconnected with the increased demand for more low-carbon electricity generation. Under GHG scenarios, carbon intensity of electricity is decreased by 96% in 2050 relative to 2010.;Therefore, it is crucial to decarbonize the electricity through extensive use of renewables and design proper policies to promote efficiency improvement and reduce service demands to reach 2050 emissions reduction target with relatively low cost. (Abstract shortened by UMI.).
机译:气候变化是当今世界上最重要的问题之一,对此它也越来越引起关注。加利福尼亚州是美国减少温室气体(GHG)排放的领先州;它设定了到2020年实现1990年排放水平的目标,并设定了到2050年将1990年排放水平降低至80%的长期目标。明确的短期政策和短期采取的必要措施,加利福尼亚州在实现2020年目标的正确轨道上;为加利福尼亚开发了许多能源模型。但是,它们要么没有解决加利福尼亚州减少温室气体的成本问题,要么缺乏系统建模方法。这些模型无法明确分析减排成本,无法考虑经济不同部门之间的互动政策,也无法最佳地分配财务/物质资源。 CA-TIMES是第一个明确计算减排成本的模型,其中考虑了能源系统的不同部门及其相互作用,并找到了达到政策目标的最佳货币/资源分配。住宅和商业部门基于预计的能源服务需求与技术和燃料无关。住宅领域包括用于满足十三项住宅最终用途服务需求的最终用途需求技术,包括空间供暖,空间冷却,热水,照明,烹饪,冷藏,洗衣服,衣物烘干,洗碗,冷冻柜,电视,泳池水泵,以及其他。同样,商业部门的最终用途需求技术包括烹饪,照明,热水,制冷,空间制冷和供暖,通风,办公设备及其他,这些在我们的模型中用于满足服务需求。该模型由满足这些服务需求的燃料类型(例如天然气,电力,LPG)和最终使用技术(例如紧凑型荧光灯,熔炉,电视)描述。能源服务需求是根据假设的驱动因素进行预测的,这些驱动因素包括人口,建筑物的大小,建筑物的供暖/制冷系数,设备饱和率,设备利用率和商业占地面积。未来技术的采用和减排取决于经济因素(包括燃油价格变化),消费者的选择,技术的可获得性和政策的选择,以确定一段时间内全州范围内住宅和商业能源的总使用量。该模型选择满足能源服务需求的技术,同时最大程度地降低系统净成本并满足其他用户定义的约束,例如温室气体排放目标中的策略目标,设备效率标准等。BAU策略假定现有策略未过期,并且它们将在整个建模期间一直持续到2050年。在减少温室气体的情景中,假设除了BAU情景中的可用政策外,还存在线性碳限额约束。线性碳限额假设碳限额在2020年至2050年之间为直线轨迹。CA-TIMES也可用作部分均衡模型。这意味着服务需求不是固定的,并且可以根据服务需求对其价格每年的弹性进行更改。在此框架下,该模型将与服务需求变化相关的福利损失降至最低。在此框架下运行的减少温室气体的情景称为“温室气体-弹性需求情景”。住宅和商业部门由于采用了更高效的技术以及依赖于此类技术的技术,显示出显着的效率改善和最终能源需求的减少。电力比天然气更多。 2010年,电力占商业能源消耗的57%和住宅能源消耗的37%。到2050年,在温室气体减排情景下,电力在最终能源中的份额在商业领域中占67%,在住宅领域中占79%。总体而言,在2050年,温室气体减排情景下,商业和住宅部门的加权效率分别是2010年的2.3和3.89倍。该模型可以减少服务需求,而不是在温室气体-弹性需求方案中采用有效的设备来减少温室气体排放,这也可以节省大量成本。因此,在2050年,GHG-弹性需求情景下,商业和住宅部门的加权效率提高分别降至2.21和3.55。该模型没有投资在地源热泵,高效电热水器和其他高效技术上,这些技术也很昂贵,以减少温室气体排放。取而代之的是,该模型减少了各种服务需求中的服务需求,从而降低了排放量和减排成本。在温室气体情景下,相对于2010年,2050年电力的碳强度将降低96%。,至关重要的是,通过广泛使用可再生能源来使电力脱碳,并制定适当的政策来促进效率提高和减少服务需求,以相对较低的成本实现2050年减排目标。 (摘要由UMI缩短。)。

著录项

  • 作者

    Zakerinia, Mohammad Saleh.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Environmental economics.;Public policy.;Climate change.
  • 学位 M.S.
  • 年度 2015
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:52

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号