首页> 外文学位 >Group theoretic expressions of optical singularities in photonic crystals.
【24h】

Group theoretic expressions of optical singularities in photonic crystals.

机译:光子晶体中光学奇点的群理论表达。

获取原文
获取原文并翻译 | 示例

摘要

Fundamental theoretical insights into the fine structure of electromagnetic fields in photonic crystals are developed, by examining the singular nature of field representations in linear systems, and fundamental design paradigms are established in this meta-material system. Photonic crystals are optical meta-materials that permit the transport of electromagnetic energy that can be tailored by modifying the underlying periodically structured dielectric profile. Propagation is characterized by the dispersion surface through the Bloch states, where frequency wave vector relations characterize system response. A renewed appreciation for the richness of the dispersion relations has led to a deeper consideration of the modal structure itself and its inherent relationship to symmetry. This has led to a group theoretic treatment of the fundamental system space symmetries expressed through local representations of the singular character of the Bloch mode and its vortex states.;Further research on the vectorial character of the local electromagnetic field has uncovered the rich nature of polarization singularities in these periodic microstructures. A group theory representation is used to express its complementarity polarization singularity representation, where fundamental transformation operations permitted by the system's space group are quantified. As a result, the entire electromagnetic field may be determined from the fundamental domain of the system's space group, using derived transformation properties of the local state of polarization. Furthermore, it is shown that local symmetry requires the electromagnetic field to become singular at particular points, known as Wyckoff positions. The reduction of the electromagnetic field to a fundamental domain, the location of the optical singularities, and the transformation properties of the local state of the electromagnetic field allow one to determine the major features of the sub-wavelength structure of the electromagnetic field from fundamental symmetry principles.;In each the case, these fundamental principles were applied to Bloch modes derived in the vanishing dielectric contrast limit. Additional confirmation of theoretical predictions is supported by simulations of high-dielectric-contrast, purely two-dimensional, photonic crystal Bloch modes, in which Maxwell's equations are solved directly using the Finite Element Method (FEM). Finally, studies of optical vortices and polarization singularities within dimensionally confined photonic crystal slabs are studied with three-dimensional FEM simulations, in order to inform the design and fabrication of such structures for future experimental confirmation of the phenomena and possible photonic crystal optical singularity applications.;Central to this study is an analysis of the local energy transport, which has uncovered the existence of optical vortices centered about phase singularities. Further investigation into the energy transport properties at the local level (i.e., far below the scale of the wavelength) reveals optical features never before explicated in the photonic crystal community. It is shown that the electromagnetic mode structure bears the hallmarks of singular optics, whereby the field becomes characterized by singularities---that is, spatial locations where mathematical descriptions of optical properties become undefined. Optical vortices, revealed by energy circulation about a singular point, are expressed by global system space symmetries and the particular character of the dispersion surface. Vortices are the local field magnitude response to their associated phase singularities. In this study, the locations of optical vortices in real space are determined using phasor geometry, and the symmetry rules for their existence are established with group theory. They are categorized into symmetry and accidental singularities, constraining their locations in reciprocal space.
机译:通过检查线性系统中场表示的奇异性质,开发了对光子晶体中电磁场的精细结构的基本理论见解,并在此超材料系统中建立了基本的设计范式。光子晶体是光学超常材料,可以传输电磁能,可以通过修改下面的周期性结构化介电轮廓来定制该电磁能。传播的特征是通过布洛赫状态的色散表面,其中频率波矢量关系表征了系统响应。对色散关系的丰富性的重新认识导致对模态结构本身及其与对称性的内在关系的更深入的考虑。这导致了对通过基本形式的布洛赫模式及其涡旋状态的局部表示所表示的基本系统空间对称性的一组理论处理。;对局部电磁场矢量特性的进一步研究揭示了极化的丰富性质这些周期性微结构中的奇异点。使用群论表示法来表达其互补极化奇点表示法,其中对系统空间群所允许的基本变换操作进行量化。结果,可以使用导出的局部极化状态的变换特性,从系统空间组的基本域中确定整个电磁场。此外,还表明局部对称性要求电磁场在称为Wyckoff位置的特定点处变得奇异。将电磁场减小到基本域,光学奇异点的位置以及电磁场局部状态的转换特性使人们可以从基本对称性确定电磁场的亚波长结构的主要特征在每种情况下,这些基本原理都适用于在消失的电介质对比度极限中得出的Bloch模式。高介电常数纯二维二维光子晶体布洛赫模式的仿真支持了理论预测的进一步证实,其中麦克斯韦方程式是使用有限元方法(FEM)直接求解的。最后,利用三维有限元模拟研究了尺寸受限的光子晶体平板中的光学涡旋和偏振奇异性,从而为此类结构的设计和制造提供了信息,以供将来对该现象进行实验确认以及可能的光子晶体光学奇异性应用。 ;这项研究的中心是对局部能量传输的分析,它揭示了以相位奇点为中心的光学涡旋的存在。在局部水平(即,远低于波长的尺度)上对能量传输性质的进一步研究揭示了在光子晶体社区中从未有过的光学特征。结果表明,电磁模结构具有奇异光学特性,从而使场成为奇异性的特征,也就是光学特性的数学描述变得不确定的空间位置。通过围绕奇异点的能量循环揭示的光学涡旋由整体系统空间对称性和分散表面的特定特征表示。涡旋是对它们相关的相位奇点的局部场幅值响应。在这项研究中,使用相量几何来确定光学旋涡在真实空间中的位置,并使用群论建立它们存在的对称性规则。它们分为对称性和意外奇异性,从而限制了它们在对等空间中的位置。

著录项

  • 作者

    Wheeldon, Jeffrey F.;

  • 作者单位

    University of Ottawa (Canada).;

  • 授予单位 University of Ottawa (Canada).;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 250 p.
  • 总页数 250
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号