首页> 外文学位 >Learning Approaches to Analog and Mixed Signal Verification and Analysis.
【24h】

Learning Approaches to Analog and Mixed Signal Verification and Analysis.

机译:模拟和混合信号验证和分析的学习方法。

获取原文
获取原文并翻译 | 示例

摘要

There are many automated characterization, test, and verification methods used in practice for digital circuits, but analog and mixed signal circuits suffer from long simulation times brought on by transistor-level analysis. Due to the substantial amount of simulations required to properly characterize and verify an analog circuit, many undetected issues manifest themselves in the manufactured chips.;Creating behavioral models, a circuit abstraction of analog components assists in reducing simulation time which allows for faster exploration of the design space. Traditionally, creating behavioral models for non-linear circuits is a manual process which relies heavily on design knowledge for proper parameter extraction and circuit abstraction. Manual modeling requires a high level of circuit knowledge and often fails to capture critical effects stemming from block interactions and second order device effects. For this reason, it is of interest to extract the models directly from the SPICE level descriptions so that these effects and interactions can be properly captured. As the devices are scaled, process variations have a more profound effect on the circuit behaviors and performances. Creating behavior models from the SPICE level descriptions, which include input parameters and a large process variation space, is a non-trivial task.;In this dissertation, we focus on addressing various problems related to the design automation of analog and mixed signal circuits. Analog circuits are typically highly specialized and fined tuned to fit the desired specifications for any given system reducing the reusability of circuits from design to design. This hinders the advancement of automating various aspects of analog design, test, and layout. At the core of many automation techniques, simulations, or data collection are required. Unfortunately, for some complex analog circuits, a single simulation may take many days. This prohibits performing any type of behavior characterization or verification of the circuit. This leads us to the first fundamental problem with the automation of analog devices. How can we reduce the simulation cost while maintaining the robustness of transistor level simulations? As analog circuits can vary vastly from one design to the next and are hardly ever comprised of standard library based building blocks, the second fundamental question is how to create automated processes that are general enough to be applied to all or most circuit types? Finally, what circuit characteristics can we utilize to enhance the automation procedures?;The objective of this dissertation is to explore these questions and provide suitable evidence that they can be answered. We begin by exploring machine learning techniques to model the design space using minimal simulation effort. Circuit partitioning is employed to reduce the complexity of the machine learning algorithms. Using the same partitioning algorithm we further explore the behavior characterization of analog circuits undergoing process variation. The circuit partitioning is general enough to be used by any CMOS based analog circuit. The ideas and learning gained from behavioral modeling during behavior characterization are used to improve the simulation through event propagation, input space search, complexity and information measurements. The reduction of the input space and behavioral modeling of low complexity, low information primitive elements reduces the simulation time of large analog and mixed signal circuits by 50--75%. The method is extended and applied to assist in analyzing analog circuit layout. All of the proposed methods are implemented on analog circuits ranging from small benchmark circuits to large, highly complex and specialized circuits.;The proposed dependency based partitioning of large analog circuits in the time domain allows for fast identification of highly sensitive transistors as well as provides a natural division of circuit components. Modeling analog circuits in the time domain with this partitioning technique and SVM learning algorithms allows for very fast transient behavior predictions, three orders of magnitude faster than traditional simulators, while maintaining 95% accuracy. Analog verification can be explored through a reduction of simulation time by utilizing the partitions, information and complexity measures, and input space reduction. Behavioral models are created using supervised learning techniques for detected primitive elements. We will show the effectiveness of the method on four analog circuits where the simulation time is decreased by 55--75%. Utilizing the reduced simulation method, critical nodes can be found quickly and efficiently. The nodes found using this method match those found by an experienced layout engineer, but are detected automatically given the design and input specifications. The technique is further extended to find the tolerance of transistors to both process variation and power supply fluctuation. This information allows for corrections in layout overdesign or guidance in placing noise reducing components such as guard rings or decoupling capacitors. The proposed approaches significantly reduce the simulation time required to perform the tasks traditionally, maintain high accuracy, and can be automated. (Abstract shortened by UMI.).
机译:在实践中,有许多用于数字电路的自动表征,测试和验证方法,但是模拟和混合信号电路会遭受晶体管级分析带来的长时间仿真。由于要正确表征和验证模拟电路需要进行大量仿真,因此在制造的芯片中会出现许多未发现的问题。创建行为模型时,模拟组件的电路抽象有助于减少仿真时间,从而可以更快地探索仿真电路。设计空间。传统上,为非线性电路创建行为模型是一个手动过程,该过程严重依赖于设计知识来进行正确的参数提取和电路抽象。手动建模需要高水平的电路知识,并且通常无法捕获由于模块交互和二阶器件效应而产生的关键效应。因此,有兴趣直接从SPICE级别描述中提取模型,以便可以正确捕获这些影响和相互作用。随着器件规模的扩大,工艺变化对电路性能和性能的影响更大。从SPICE级别描述创建行为模型,包括输入参数和较大的过程变化空间,是一项艰巨的任务。本论文着重解决与模拟和混合信号电路设计自动化相关的各种问题。模拟电路通常高度专业化,并经过微调以适合任何给定系统的所需规格,从而降低了设计之间电路的可重用性。这阻碍了自动化模拟设计,测试和布局各个方面的进展。作为许多自动化技术的核心,需要模拟或数据收集。不幸的是,对于某些复杂的模拟电路,一次仿真可能需要几天的时间。这禁止执行任何类型的行为表征或电路验证。这导致我们面临模拟设备自动化的第一个基本问题。我们如何在保持晶体管级仿真鲁棒性的同时降低仿真成本?由于从一个设计到下一个设计,模拟电路可以有很大的不同,并且几乎没有基于标准库的构建块组成,所以第二个基本问题是如何创建通用性强的自动化过程,以应用于所有或大多数电路类型?最后,我们可以利用哪些电路特性来增强自动化程序?;本论文的目的是探索这些问题,并提供可以回答这些问题的适当证据。我们首先探索机器学习技术,以最小的仿真工作来对设计空间进行建模。电路划分用于降低机器学习算法的复杂性。使用相同的划分算法,我们进一步探索了经历过程变化的模拟电路的行为特征。电路划分足够通用,可以被任何基于CMOS的模拟电路使用。在行为表征期间从行为建模中获得的思想和学习被用于通过事件传播,输入空间搜索,复杂性和信息测量来改善仿真。输入空间的减少和低复杂度,低信息原始元素的行为建模将大型模拟和混合信号电路的仿真时间减少了50--75%。该方法被扩展并应用于辅助分析模拟电路布局。所有提出的方法都在从小型基准电路到大型,高度复杂和专用电路的模拟电路上实现;提议的基于依存关系的时空划分大型模拟电路可快速识别高灵敏晶体管并提供电路组件的自然划分。使用这种划分技术和SVM学习算法在时域中对模拟电路建模可以实现非常快速的瞬态行为预测,比传统的仿真器快三个数量级,同时保持95%的精度。通过利用分区,信息和复杂性度量以及输入空间的减少,可以通过减少仿真时间来探索模拟验证。使用监督学习技术为检测到的原始元素创建行为模型。我们将展示该方法在四个模拟电路上的有效性,其中模拟时间减少了55--75%。利用简化的仿真方法,可以快速有效地找到关键节点。使用此方法找到的节点与经验丰富的布局工程师找到的节点匹配,但会根据设计和输入规范自动进行检测。进一步扩展了该技术以找到晶体管对工艺变化和电源波动的容忍度。该信息可以校正布局的过度设计,也可以指导放置诸如保护环或去耦电容器之类的降噪组件。所提出的方法显着减少了传统上执行任务,保持高精度并可以自动化的仿真时间。 (摘要由UMI缩短。)。

著录项

  • 作者

    Alt, Samantha Alice.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Computer engineering.;Artificial intelligence.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号