首页> 外文学位 >Creating highly efficient carrier injection or collection contacts via soft-contact lamination of p-doped interlayers.
【24h】

Creating highly efficient carrier injection or collection contacts via soft-contact lamination of p-doped interlayers.

机译:通过p掺杂中间层的软接触层压来创建高效的载流子注入或收集接触。

获取原文
获取原文并翻译 | 示例

摘要

Molecular doping of organic semiconductors has long been investigated and is an effective method for increasing film conductivity and creating highly efficient contacts for electronic devices. It has been shown that inserting a (n- or p-) doped transport layer at the contacts could significantly improve the efficiency of small-molecule electronic devices, in which dopants can be precisely positioned via controlled vacuum co-deposition. However, precise interface confinement of dopants in a solution processed film is more challenging, due to limited choices of soluble molecular dopants and difficulties in stacking multilayers of polymer films.;We present here a novel approach, which consists in physically transferring onto the active layer of the device via soft-contact lamination (SCL) of an ultra-thin doped polymer film. This film, separately spin-coated from a solution containing a controlled amount of soluble dopant, creates a high-conductivity layer with controllable work function, that is also electronically and chemically compatible with the organic active layer. This approach affords unprecedented flexibility in the positioning of doped regions in organic devices.;In this work, p-doping of the host transport layer is achieved by co-solution of one of the following hole-transport polymers, i.e., poly(3-hexylthiophene-2,5-diyl) (P3HT), poly [(4,8-bis-(2 ethylhexyloxy)-benzo[1,2-b-4,5-b']dithiophene)-2,6-diylalt-(4-(2-ethylhexanoyl)-thieno[3,4 -b]thiophene)]-2,6-diyl (PBDTTT-C) or poly [N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine] (poly-TPD), and either the soluble oxidizing p-dopants molybdenum tris-[1-(methoxycarbonyl)- 2-(trifluoromethyl) ethane-1,2-dithiolene] (Mo(tfd-CO2Me)3) or molybdenum tris-[1-(trifl uoroethanoyl)-2-(trifluoromethyl)ethane-1,2-dithiolene] (Mo(tfd-COCF 3)3). The impact of p-doping on electronic structure in the bulk is investigated via ultra-violet photoemission spectroscopy (UPS) on doped and undoped polymer films, which shows a downward shift of Fermi level toward the highest occupied molecular orbital (HOMO) level by doping. Current-voltage (I - V ) measurements were also performed and the results show an enhancement of the conductivity in the host polymer layer by almost 6 orders of magnitude, up to 10-2 - 10-1 S/cm at room temperature. SCL of a thin doped polymer layer on the undoped polymer film is used to create spatially-conned doped regions, which serve as hole-injection contacts. This strategy is also successfully applied to create efficient hole-collecting contacts on solution-processed inverte polymer solar cells.;The spatial stability of the dopants in polymer and polymer blend films is investigated via secondary ion mass spectrometry (SIMS) and I - V measurements. While the dopant is found to be very mobile in pure P3HT, it is far more stable in PBDTTT-C and poly-TPD. P3HT-fullerene and PBDTTT-C-fullerene bulk heterojunction (BHJ) solar cells with laminated doped films as hole-collection layers also show long term stability, consistent with the observation that dopants are stable at the interface with the BHJ. Our findings suggest a promising route to achieve spatially confined doping with long-term stability, leading to highly efficient hole collection / injection contacts for all-solution processed polymer devices.
机译:长期以来,对有机半导体的分子掺杂进行了研究,这是增加膜电导率并为电子设备创建高效触点的有效方法。已经显示出在触点处插入(n-或p-)掺杂的传输层可以显着提高小分子电子器件的效率,其中可以通过受控的真空共沉积来精确地定位掺杂剂。然而,由于对可溶性分子掺杂剂的选择有限以及在聚合物膜的多层堆叠中的困难,在溶液处理的膜中对掺杂剂进行精确的界面限制更具挑战性。通过超薄掺杂聚合物薄膜的软接触层压(SCL)来完成设备的制造。从包含受控量的可溶性掺杂剂的溶液中分别旋涂该膜,形成具有可控功函数的高电导率层,该电导率层也与有机活性层在电子和化学上相容。这种方法为有机器件中掺杂区域的定位提供了前所未有的灵活性。在这项工作中,通过以下一种空穴传输聚合物(即聚(3-己基噻吩-2,5-二基)(P3HT),聚[(4,8-双-(2-乙基己氧基)-苯并[1,2-b-4,5-b']二噻吩)-2,6-二ylalt- (4-(2-乙基己基)-噻吩并[3,4-b]噻吩)]-2,6-二基(PBDTTT-C)或聚[N,N'-双(4-丁基苯基)-N,N' -双(苯基)-联苯胺](poly-TPD),以及可溶的氧化p型掺杂剂三-[1-(甲氧基羰基)-2-(三氟甲基)乙烷-1,2-二硫代]钼] CO 2 Me)3)或三-[1-(三氟氟乙酰基)-2-(三氟甲基)乙烷-1,2-二硫代钼]钼(Mo(tfd-COCF 3)3)。通过在掺杂和未掺杂的聚合物薄膜上的紫外光发射光谱(UPS)研究了p掺杂对本体电子结构的影响,这表明掺杂后费米能级朝着最高占据分子轨道(HOMO)的方向向下移动。还进行了电流-电压(IV)测量,结果表明主体聚合物层中的电导率提高了近6个数量级,在室温下可达10-2-10-1 S / cm。未掺杂的聚合物薄膜上的薄掺杂聚合物层的SCL用于创建空间掺杂的掺杂区域,该区域用作空穴注入触点。该策略还成功地应用于在溶液处理的倒置聚合物太阳能电池上创建有效的空穴收集触点。;通过二次离子质谱(SIMS)和I-V测量研究了聚合物和聚合物共混膜中掺杂剂的空间稳定性。尽管发现掺杂剂在纯P3HT中非常易移动,但在PBDTTT-C和poly-TPD中却更加稳定。具有层压掺杂膜作为空穴收集层的P3HT-富勒烯和PBDTTT-C-富勒烯本体异质结(BHJ)太阳能电池也显示出长期稳定性,这与观察到掺杂剂在与BHJ的界面处稳定有关。我们的发现表明,实现长期受限的空间受限掺杂的有前途的途径,可为全溶液加工的聚合物器件带来高效的空穴收集/注入接触。

著录项

  • 作者

    Dai, An.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 207 p.
  • 总页数 207
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:52

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号