首页> 外文学位 >High performance computational algorithms for a class of integer and fractional evolutionary models.
【24h】

High performance computational algorithms for a class of integer and fractional evolutionary models.

机译:用于一类整数和分数进化模型的高性能计算算法。

获取原文
获取原文并翻译 | 示例

摘要

Evolutionary models that depend on space and time variables occur in many physical processes. A standard approach for such systems is based on a classical diffusion modeling which leads to integer derivatives in the time and spatial variables. However, it has been observed in the literature that in many single- and multi-phase flow cases, especially in complex porous media, it is appropriate to use anomalous sub-diffusion models. Such models can be described by a class of non-local in time fractional derivative partial differential equations (FPDEs). In various applications, such as reservoir management, understanding the long-time behavior and resolving fines structures of processes governed by such models are crucial from early design phase to production phase. Therefore, fine meshes with large degrees of freedom (DoF) are needed in associated computer models to obtain relatively accurate simulated physical processes. Consequently, for long time simulation, implicit time-stepping discretization methods (such as the Crank-Nicolson and implicit Euler) require a computationally prohibitive number of discrete time-steps. Such industrial standard approaches are inherently serial-in-time and require several days of simulation even using efficient parallel-in-space algorithms on high performance computing (HPC) environments. HPC systems provide a large number of processing cores with various limitations, in particular on the amount of memory available per compute node. The memory limitation leads to severe constraints for resolving fine spatial structures that require large DoF. Accordingly, long time simulation cannot be achieved within reasonable simulation time and computational cost. In this work, we avoid the time-stepping computational bottleneck by developing a class of efficient hybrid HPC algorithms that combines parallel in time and space tasks. Our approach facilitates careful balancing between parallel performance and the memory constraint to efficiently simulate evolutionary FPDEs. We demonstrate the parallel HPC performance of the algorithm for several space-time evolutionary models using several millions of spatial DoF. We validate our HPC framework for efficient simulation of a class of fractional-Darcy's law based single-phase flow models, with potential application to develop a new generation of reservoir simulators.
机译:依赖于空间和时间变量的进化模型出现在许多物理过程中。这种系统的标准方法基于经典的扩散模型,该模型会导致时间和空间变量的整数导数。但是,在文献中已经观察到,在许多单相和多相流情况下,尤其是在复杂的多孔介质中,使用异常的亚扩散模型是合适的。这样的模型可以用一类非局部时间分数导数偏微分方程(FPDE)来描述。在诸如油藏管理等各种应用中,从早期设计阶段到生产阶段,了解长期行为并解决由此类模型控制的过程的精细结构至关重要。因此,在关联的计算机模型中需要具有大自由度(DoF)的细网格,以获得相对准确的模拟物理过程。因此,对于长时间的仿真,隐式时间步离散化方法(例如Crank-Nicolson和隐式Euler)要求计算量大的离散时间步。这样的工业标准方法本质上是时间序列的,并且即使在高性能计算(HPC)环境中使用高效的空间并行算法,也需要几天的模拟时间。 HPC系统为大量处理内核提供了各种限制,特别是在每个计算节点可用的内存量方面。内存限制导致严格的约束,无法解析需要大自由度的精细空间结构。因此,不能在合理的仿真时间和计算成本内实现长时间仿真。在这项工作中,我们通过开发将时空并行任务组合在一起的高效混合HPC算法,避免了时间步长的计算瓶颈。我们的方法有助于在并行性能和内存约束之间进行谨慎的平衡,以有效地模拟进化的FPDE。我们演示了使用数百万个空间自由度的几种时空演化模型的算法的并行HPC性能。我们验证了我们的HPC框架,可以有效地模拟基于分数-达西定律的单相流模型,并有可能用于开发新一代油藏模拟器。

著录项

  • 作者

    Alyoubi, Ahmad H.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Computer science.;Applied mathematics.;Mathematics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号