首页> 外文学位 >Design of PVT Tolerant Inverter Based Circuits for Low Supply Voltages
【24h】

Design of PVT Tolerant Inverter Based Circuits for Low Supply Voltages

机译:低电源电压的耐PVT逆变器电路设计

获取原文
获取原文并翻译 | 示例

摘要

Rapid advances in the field of integrated circuit design has been advantageous from the point of view of cost and miniaturization. Although technology scaling is advantageous to digital circuits in terms of increased speed and lower power, analog circuits strongly suffer from this trend. This is becoming a crucial bottle neck in the realization of a system on chip in scaled technology merging high-density digital parts, with high performance analog interfaces. This is because scaled technologies reduce the output impedance (gain) and supply voltage which limits the dynamic range (output swing). One way to mitigate the power supply restrictions is to move to current mode circuit design rather than voltage mode designs.;This thesis focuses on designing Process Voltage and Temperature (PVT) tolerant base band circuits at lower supply voltages and in lower technologies. Inverter amplifiers are known to have better transconductance efficiency, better noise and linearity performance. But inverters are prone to PVT variations and has poor CMRR and PSRR. To circumvent the problem, we have proposed various biasing schemes for inverter like semi constant current biasing, constant current biasing and constant gm biasing. Each biasing technique has its own advantages, like semi constant current biasing allows to select different PMOS and NMOS current. This feature allows for higher inherent inverter linearity. Similarly constant current and constant gm biasing allows for reduced PVT sensitivity. The inverter based OTA achieves a measured THD of -90.6 dB, SNR of 78.7 dB, CMRR 97dB, PSRR 61 dB wile operating from a nominal power of 0.9V and at output swing of 0.9Vpp,dif f in TSMC 40nm general purpose process. Further the measured third harmonic distortion varies approximately by 11.5dB with 120° variation in temperature and 9dB with a 18% variation in supply voltage.;The linearity can be increased by increasing the loop gain and bandwidth in a negative feedback circuit or by increasing the over drive voltage in open loop architectures. However both these techniques increases the noise contribution of the circuit. There exist a trade off between noise and linearity in analog circuits. To circumvent this problem, we have introduced nonlinear cancellation techniques and noise filtering techniques. An analog-to-digital converter (ADC) driver which is capable of amplifying the continuous time signal with a gain of 8 and sample onto the input capacitor(1pF) of 1 10 bit successive approximation register (SAR) ADC is designed in TSMC 65nm general purpose process. This exploits the non linearity cancellation in current mirror and also allows for higher bandwidth operation by decoupling closed loop gain from the negative feedback loop. The noise from the out of band is filtered before sampling leading to low noise operation. The measured design operates at 100MS/s and has an OIP3 of 40dBm at the nyquist rate, noise power spectral density of 17nV/□Hz and inter modulation distortion of 65dB. The intermodulation distortion variation across 10 chips is 6dB and 4dB across a temperature variation of 120°C.;Non linearity cancellation is exploited in designing two filters, an anti alias filter and a continuously tunable channel select filter. Traditional active RC filters are based on cascade of integrators. These create multiple low impedance nodes in the circuit which results in a higher noise. We propose a real low pass filter based filter architecture rather than traditional integrator based approach. Further the entire filtering operation takes place in current domain to circumvent the power supply limitations. This also facilitates the use of tunable non linear metal oxide semiconductor capacitor (MOSCAP) as filter capacitors. We introduce techniques of self compensation to use the filter resistor and capacitor as compensation capacitor for lower power. The anti alias filter designed for 50MHz bandwidth is fabricated in IBM 65nm process achieves an IIP3 of 33dBm, while consuming 1.56mW from 1.2 V supply. The channel select filter is tunable from 34MHz to 314MHz and is fabricated in TSMC 65nm general purpose process. This filter achieves an OIP3 of 25.24 dBm at the maximum frequency while drawing 4.2mA from 1.1V supply. The measured intermodulation distortion varies by 5dB across 120°C variation in temperature and 6.5dB across a 200mV variation in power supply. Further this filter presents a high impedance node at the input and a low impedance node at the output easing system integration.
机译:从成本和小型化的角度来看,集成电路设计领域的快速发展是有利的。尽管就提高速度和降低功率而言,技术扩展对数字电路是有利的,但模拟电路却遭受这种趋势的困扰。这在规模化技术中片上系统的实现成为关键瓶颈,该技术将高密度数字部件与高性能模拟接口融合在一起。这是因为缩放技术降低了输出阻抗(增益)和电源电压,从而限制了动态范围(输出摆幅)。缓解电源限制的一种方法是转向电流模式电路设计,而不是电压模式设计。本论文着重于在较低的电源电压和较低的技术中设计可耐受过程电压和温度(PVT)的基带电路。众所周知,反相放大器具有更好的跨导效率,更好的噪声和线性性能。但是,逆变器容易出现PVT变化,并且CMRR和PSRR较差。为了解决这个问题,我们为逆变器提出了各种偏置方案,例如半恒定电流偏置,恒定电流偏置和恒定gm偏置。每种偏置技术都有其自身的优势,例如半恒流偏置允许选择不同的PMOS和NMOS电流。此功能可实现更高的固有逆变器线性度。同样,恒定电流和恒定gm偏置可降低PVT灵敏度。在台积电(TSMC)40nm通用工艺中,基于额定功率为0.9V且输出摆幅为0.9Vpp,dif时,基于逆变器的OTA的实测THD为-90.6 dB,SNR为78.7 dB,CMRR为97dB,PSRR为61 dB。此外,在温度变化120°时,测得的三次谐波失真大约变化11.5dB,在电源电压变化18%时变化大约9dB .;线性度可以通过增加负反馈电路中的环路增益和带宽或通过增加环路增益来增加。开环架构中的过驱动电压。但是,这两种技术都会增加电路的噪声贡献。在模拟电路中,噪声和线性之间存在一个权衡。为了解决这个问题,我们引入了非线性抵消技术和噪声过滤技术。在台积电65nm中设计了一种模数转换器(ADC)驱动器,该驱动器能够以8的增益放大连续时间信号并采样到1个10位逐次逼近寄存器(SAR)ADC的输入电容器(1pF)通用过程。这利用了电流镜中的非线性抵消功能,并且还通过将闭环增益与负反馈环路解耦来实现更高的带宽操作。带外的噪声在采样之前被过滤,从而实现了低噪声操作。测得的设计以100MS / s的速度工作,在奈奎斯特速率下的OIP3为40dBm,噪声功率频谱密度为17nV / sHz,互调失真为65dB。跨10个芯片的互调失真变化在120°C的温度变化范围内分别为6dB和4dB .;在设计两个滤波器(抗混叠滤波器和连续可调通道选择滤波器)时采用了非线性消除。传统的有源RC滤波器基于积分器的级联。这些会在电路中产生多个低阻抗节点,从而导致较高的噪声。我们提出了一个真正的基于低通滤波器的滤波器架构,而不是传统的基于积分器的方法。此外,整个滤波操作在电流域内进行,以规避电源限制。这也有利于使用可调非线性金属氧化物半导体电容器(MOSCAP)作为滤波电容器。我们介绍自补偿技术,以使用滤波电阻器和电容器作为补偿电容器以降低功耗。专为50MHz带宽设计的抗混叠滤波器采用IBM 65nm工艺制造,实现了33dBm的IIP3,同时从1.2V电源消耗了1.56mW。通道选择滤波器的可调范围为34MHz至314MHz,并采用TSMC 65nm通用工艺制造。该滤波器在最大频率下的OIP3为25.24 dBm,同时从1.1V电源汲取4.2mA电流。测得的互调失真在120°C温度变化范围内变化5dB,在200mV电源变化范围内变化6.5dB。此外,该滤波器在输入端呈现高阻抗节点,在输出端呈现低阻抗节点,从而简化了系统集成。

著录项

  • 作者

    Palani, Rakesh Kumar.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号