首页> 外文学位 >Type 1 Diabetic Heart: Examination of Mitochondrial Structure and MicroRNAs.
【24h】

Type 1 Diabetic Heart: Examination of Mitochondrial Structure and MicroRNAs.

机译:1型糖尿病心脏:线粒体结构和MicroRNA的检查。

获取原文
获取原文并翻译 | 示例

摘要

Cardiac complications such as diabetic cardiomyopathy are the leading cause of morbidity and mortality in patients with diabetes mellitus. Dysfunctional mitochondria, an effect associated with cardiomyopathy, are central in the pathogenesis of type 1 diabetes mellitus. Cardiac mitochondria are comprised of two spatially located mitochondria including mitochondria located beneath the sarcolemma, termed subsarcolemmal mitochondria (SSM) and those located in between myofibrils, termed interfibrillar mitochondria (IFM). Mitochondrial subpopulations have been shown to respond differently to pathological and physiological stimuli as reported in a review published by our laboratory. IFM mitochondria are most impacted in a type 1 diabetic setting. Proteomic alterations in cardiac mitochondria during a diabetic insult reveal impact primarily on IFM on nuclear-encoded mitochondrial proteins, a finding that has been previously reported by our laboratory. Alterations of proteins encoded by the mitochondrial genome have not been observed in our proteomics. Further, regulation of nuclear-encoded proteins by microRNAs (miRNAs) has been previously reported by our laboratory. MiRNAs are 22 nucleotide long post-transcriptional regulators with a 7 nucleotide seeding region specific to complementary sequences in the mRNA. More than 30% of all proteins are regulated by miRNAs and one miRNA has the potential to regulate the expression of multiple proteins. The potential regulation of mitochondrial genome encoded proteins by miRNAs has yet to be investigated in mitochondrial subpopulations during diabetes. Among the altered nuclear encoded proteins in type 1 diabetic IFM is structural protein known as mitofilin. Mitofilin is an inner mitochondrial membrane structural protein, well established for its role in maintaining cristae morphology and structure. It is a central component of the mitochondrial contact site and cristae organizing system (MICOS) complex. Interactions of mitofilin with outer and inner membrane proteins have been reported to be crucial for mitochondrial membrane organization, cristae integrity and inner membrane architecture. Moreover, MICOS has been shown to function in concert with ATP synthase dimers. However, association of mitofilin with ATP synthase subunits is not known. Moreover, literature examining association of mitofilin and regulation of mitochondrial genome by miRNAs in type 1 diabetic insult is sparse. Also, the impact of diabetes mellitus on mitofilin protein interactions, mitochondrial structure and function are currently unclear. It is specifically unknown whether overexpression of mitofilin aids in alleviating complications associated with diabetic cardiomyopathy. The goal of the present studies was to determine novel association of mitofilin and the impact of mitofilin overexpression upon mitochondrial structure and function. Further, regulation of mitochondrial genome by mitochondrial miRNAs (mitomiRs) has been investigated. The overall hypothesis of this application is that alterations of cristae morphology, inner membrane organization and mitochondrial dysfunction observed during type 1 diabetic insult are associated with decrements in mitofilin content as well as translational regulation of mitochondrial encoded proteins due to altered levels of mitochondrial miRNAs (mitomiRs). Type 1 diabetes mellitus was induced in five weeks old mice with multiple low dose injections of streptozotocin (STZ) for five consecutive days. Five weeks post hyperglycemic onset, hearts were excised and mitochondrial subpopulations isolated for further studies. Using a gel based technique, mitochondrial proteins immunoprecipitated with mitofilin were subjected to LC-ESI-MS analysis. Proteins from all electron transport chain complexes, structural proteins and proteins involved in protein import were identified in an immunoprecipitated complex. Association of mitofilin with F0 -ATP synthase subunit b (ATP5F1) was decreased in the diabetic IFM when compared with control. Moreover, interaction of mitofilin with coiled-coil-helix coiled-coil-helix domain 3 (CHCHD3) trended towards decreased in diabetic IFM. A transgenic mouse line overexpressing mitofilin was generated and utilized to investigate the role of mitofilin overexpression in mitochondrial structure and function. Restoration of ejection fraction and fractional shortening was observed in mitofilin diabetic mice as compared to wild-type controls (P<0.05 for both). Decrements observed in electron transport chain (ETC) complexes I, III, IV and V activities, state 3 respiration, lipid peroxidation as well as mitochondria membrane potential in type 1 diabetic IFM were restored in mitofilin diabetic mice (P<0.05 for all). Qualitative analyses of electron micrographs revealed restoration of mitochondrial cristae structure in mitofilin diabetic mice as compared to wild-type controls. Furthermore measurement of mitochondrial internal complexity using flow cytometry displayed significant reduction in internal complexity in diabetic IFM which was restored in mitofilin diabetic IFM (P<0.05). No significant changes in mitochondrial dynamic regulating proteins or mitochondrial DNA content were observed. Examination of mitochondrial miRNAs was performed using microarray technology coupled with cross-linking immunoprecipitation and next generation sequencing, we identified a functional pool of mitochondrial microRNAs, termed mitomiRs that are redistributed in spatially-distinct mitochondrial subpopulations in an inverse manner following diabetic insult. (Abstract shortened by UMI.).
机译:糖尿病性心肌病等心脏并发症是糖尿病患者发病和死亡的主要原因。线粒体功能异常(一种与心肌病相关的效应)在1型糖尿病的发病机理中至关重要。心脏线粒体由两个空间定位的线粒体组成,包括位于肌膜下方的线粒体(称为肌膜下线粒体(SSM))和位于肌原纤维之间的线粒体(称为原纤维间线粒体(IFM))。根据我们实验室发表的评论,线粒体亚群对病理和生理刺激的反应不同。 IFM线粒体在1型糖尿病患者中受到的影响最大。糖尿病损伤期间心脏线粒体的蛋白质组学改变显示出主要影响IFM的核编码线粒体蛋白,这一发现先前已由我们的实验室报道。在我们的蛋白质组学中尚未观察到由线粒体基因组编码的蛋白质的变化。此外,以前我们的实验室已经报道过通过microRNA(miRNA)调节核编码蛋白。 MiRNA是22个核苷酸长的转录后调节因子,具有7个核苷酸的种子区域,该区域对mRNA中的互补序列具有特异性。超过30%的蛋白质受miRNA调控,一种miRNA具有调控多种蛋白质表达的潜力。 miRNA对线粒体基因组编码蛋白的潜在调节作用尚未在糖尿病期间的线粒体亚群中进行研究。在1型糖尿病IFM中改变的核编码蛋白中,有一种称为mitofilin的结构蛋白。线粒体蛋白是一种内部线粒体膜结构蛋白,因其在维持cr的形态和结构方面的作用而广为人知。它是线粒体接触部位和cr组织系统(MICOS)复合体的重要组成部分。据报道,米托菲林与外膜和内膜蛋白的相互作用对于线粒体膜组织,integrity完整性和内膜结构至关重要。此外,已证明MICOS与ATP合酶二聚体协同作用。但是,丝裂霉素与ATP合酶亚基的关联尚不清楚。而且,研究mitofilin与1型糖尿病患者中miRNA调节线粒体基因组的关联的文献稀疏。同样,糖尿病对线粒体蛋白相互作用,线粒体结构和功能的影响目前尚不清楚。丝裂霉素的过度表达是否有助于减轻与糖尿病性心肌病有关的并发症,这一点目前尚不清楚。本研究的目的是确定线粒体的新关联以及线粒体结构和功能对线粒体过表达的影响。此外,已经研究了线粒体miRNA(mitomiRs)对线粒体基因组的调控。该申请的总体假设是,在1型糖尿病患者中观察到的cr的形态,内膜组织和线粒体功能障碍的改变与线粒体miRNAs(mitomiRs)水平改变引起的线粒体丝蛋白含量降低以及线粒体编码蛋白的翻译调控有关。 )。在五周大的小鼠中连续五天多次低剂量注射链脲佐菌素(STZ)诱导出1型糖尿病。高血糖发作后五周,切除心脏并分离线粒体亚群以进行进一步研究。使用基于凝胶的技术,将用米托菲林免疫沉淀的线粒体蛋白质进行LC-ESI-MS分析。在免疫沉淀复合物中鉴定出来自所有电子传输链复合物的蛋白质,结构蛋白质和蛋白质进口所涉及的蛋白质。与对照组相比,糖尿病IFM中的丝裂素与F0 -ATP合酶亚基b(ATP5F1)的关联性降低。此外,米托非林与卷曲螺旋螺旋螺旋螺旋螺旋结构域3(CHCHD3)的相互作用在糖尿病IFM中趋于减少。产生了一条过表达米托菲林的转基因小鼠品系,并用于研究米托菲林过表达在线粒体结构和功能中的作用。与野生型对照相比,米托非林糖尿病小鼠观察到射血分数的恢复和分数缩短。在电子传输链(ETC)配合物I,III,IV和V活动,状态3呼吸中观察到的减少在米托非林糖尿病小鼠中,1型糖尿病IFM中的脂质过氧化以及线粒体膜电位得以恢复(所有P均<0.05)。电子显微照片的定性分析显示,与野生型对照相比,线粒体糖尿病小鼠的线粒体cr结构得以恢复。此外,使用流式细胞仪测量线粒体内部复杂性显示糖尿病IFM的内部复杂性显着降低,这在米托非林糖尿病IFM中得以恢复(P <0.05)。线粒体动态调节蛋白或线粒体DNA含量未见明显变化。使用微阵列技术结合交联免疫沉淀和下一代测序对线粒体miRNA进行检查,我们确定了线粒体microRNA的功能池,称为mitomiRs,这些线粒体在糖尿病性损伤后以相反的方式在空间不同的线粒体亚群中重新分布。 (摘要由UMI缩短。)。

著录项

  • 作者

    Thapa, Dharendra.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Physiology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 327 p.
  • 总页数 327
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号