首页> 外文学位 >Titanium MEMS Technology Development for Drug Delivery and Microfluidic Applications.
【24h】

Titanium MEMS Technology Development for Drug Delivery and Microfluidic Applications.

机译:用于药物输送和微流控应用的钛MEMS技术开发。

获取原文
获取原文并翻译 | 示例

摘要

The use of microelectromechanical systems (MEMS) technology in medical and biological applications has increased dramatically in the past decade due to the potential for enhanced sensitivity, functionality, and performance associated with the miniaturization of devices, as well as the market potential for low-cost, personalized medicine. However, the utility of such devices in clinical medicine is ultimately limited due to factors associated with prevailing micromachined materials such as silicon, as it poses concerns of safety and reliability due to its intrinsically brittle properties, making it prone to catastrophic failure. Recent advances in titanium (Ti) micromachining provides an opportunity to create devices with enhanced safety and performance due to its proven biocompatibility and high fracture toughness, which causes it to fail by means of graceful, plasticity-based deformation. Motivated by this opportunity, we discuss our efforts to advance Ti MEMS technology in two ways: 1) Through the development of titanium-based microneedles (MNs) that seek to provide a safer, simpler, and more efficacious means of ocular drug delivery, and 2) Through the advancement of Ti anodic bonding for future realization of robust microfluidic devices for photocatalysis applications.;As for the first of these thrusts, we show that MN devices with in-plane geometry and through-thickness fenestrations that serve as drug reservoirs for passive delivery via diffusive transport from fast-dissolving coatings can be fabricated utilizing Ti deep reactive ion etching (Ti DRIE). Our mechanical testing and finite element analysis (FEA) results suggest that these devices possess sufficient stiffness for reliable corneal insertion. Our MN coating studies show that, relative to solid MNs of identical shank dimension, fenestrated devices can increase drug carrying capacity by 5-fold. Furthermore, we demonstrate that through-etched fenestrations provide a protective cavity for delivering drugs subsurface, thereby enhancing delivery efficiencies in an ex vivo rabbit cornea model. Collectively, these results show the potential embodied in developing Ti MNs for effective, minimally invasive, and low-cost ocular drug delivery.;Additionally, or the second of these thrusts, we report the development of an anodic bonding process that allows, for the first time, high-strength joining of bulk Ti and glass substrates at the wafer-scale, without need for interlayers or adhesives. We demonstrate that uniform, full-wafer bonding can be achieved at temperatures as low as 250°C, and that failure during burst pressure testing occurs via crack propagation through the glass, rather than the Ti/glass interface, thus demonstrating the robustness of the bonding. Moreover, using optimized bonding conditions, we demonstrate the fabrication of rudimentary Ti/glass-based microfluidic devices at the wafer-scale, and their leak-free operation under pressure-driven flow. Finally, we demonstrate the monolithic integration of nanoporous titanium dioxide within such devices, thus illustrating the promise embodied in Ti anodic bonding for future realization of robust microfluidic devices for photocatalysis applications. Together, these results demonstrate the potential embodied in utilizing Ti MEMS technology for the fabrication of novel drug delivery and microfluidic systems with enhanced robustness, safety, and performance.
机译:在过去的十年中,微机电系统(MEMS)技术在医疗和生物领域的应用急剧增加,这归因于与设备小型化相关的增强的灵敏度,功能和性能的潜力,以及低成本的市场潜力,个性化药。然而,由于与诸如硅之类的主流微机械材料相关的因素,这种装置在临床医学中的应用最终受到限制,因为由于其固有的脆性,它引起安全性和可靠性的担忧,从而易于发生灾难性故障。钛(Ti)微加工的最新进展提供了一个机会,可以制造出具有增强的安全性和性能的设备,这归因于其经证明的生物相容性和较高的断裂韧性,这导致其通过基于塑性的优美变形而失效。借此机会,我们以两种方式讨论了推动Ti MEMS技术发展的努力:1)通过开发钛基微针(MNs),力求提供一种更安全,更简单,更有效的眼用药物输送方式;以及2)通过Ti阳极键合技术的发展,以实现用于光催化应用的坚固的微流体装置。;对于这些推力中的第一个,我们表明具有平面内几何形状和全厚度开窗的MN装置可作为药物储存库可以使用Ti深反应离子刻蚀(Ti DRIE)来制造从快速溶解涂层扩散扩散传输的被动传输。我们的机械测试和有限元分析(FEA)结果表明,这些设备具有足够的刚度,可以可靠地插入角膜。我们的MN涂层研究表明,相对于相同小腿尺寸的固体MN,开窗式器械可将药物承载能力提高5倍。此外,我们证明了通过蚀刻的开窗孔可以为药物表面下的输送提供一个保护腔,从而提高离体兔角膜模型的输送效率。总的来说,这些结果表明开发Ti MNs具有实现有效,微创和低成本眼科药物输送的潜力。此外,或者这些推力的第二个方面,我们报告了阳极键合工艺的发展,该工艺可以实现首次,在晶圆级高强度连接块状Ti和玻璃基板,不需要中间层或粘合剂。我们证明可以在低至250°C的温度下实现均匀的全晶片键合,并且爆裂压力测试期间的失败是通过裂纹通过玻璃而不是Ti /玻璃界面传播而发生的,因此证明了金属的坚固性粘接。此外,使用优化的键合条件,我们证明了晶圆级基本的Ti /玻璃基微流体器件的制造以及在压力驱动流下的无泄漏操作。最后,我们演示了纳米多孔二氧化钛在此类设备中的单片集成,从而说明了钛阳极键合中实现光催化应用中强大的微流体设备的前景。总之,这些结果证明了利用Ti MEMS技术制造具有增强的鲁棒性,安全性和性能的新型药物递送和微流体系统的潜力。

著录项

  • 作者

    Khandan, Omid.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Mechanical engineering.;Materials science.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号