首页> 外文学位 >Adaptive, neural and robust control of wing-rock and aeroelastic system.
【24h】

Adaptive, neural and robust control of wing-rock and aeroelastic system.

机译:机翼-岩石和气动弹性系统的自适应,神经和鲁棒控制。

获取原文
获取原文并翻译 | 示例

摘要

Modern aircraft exhibit wing-rock phenomenon and aeroelastic instability. Wingrock (roll single degree of freedom motion) and aeroelastic systems' (two degrees of freedom) behavior are described by complex nonlinear differential equations. The nonlinearities in the dynamics of these systems give rise to limit cycle oscillations beyond critical speed of aircraft. The onset of wing-rock and aeroelastic instability limits the performance of aircraft and can even lead to catastrophic consequences. Therefore, control of wing-rock motion and stabilization of aeroelastic systems are important. In the past, several studies have been made and experimental and analytical results have been obtained to explain the wing-rock and aeroelastic phenomena in wind-tunnel tests, and also control systems have been derived.;Motivation for this research is the importance of flying aircraft in a large flight envelope in which complex uncertain aerodynamic nonlinearities appear, causing instabilities and flutter in the aircraft wings. For the control of wing-rock motion and the stabilization of aeroelastic instabilities, new control systems are designed. Because modeling of nonlinear dynamics of wing-rock motion and aeroelastic systems are imprecise, the control algorithms must be insensitive to model uncertainties. Apparently control theory for deterministic systems is not applicable to uncertain systems.;For the stabilization of wing-rock, two non-certainity equivalent adaptive (NCEA) laws are designed. The first control system includes a finite form realization of a speed-gradient adaptation law, and the second controller is based on the Immersion and Invariance (I&I) theory. For the nonlinear multi-input multi-output (MIMO) aeroelastic systems, equipped with leading- and trailing-edge control surfaces, four distinct control systems are designed. First, a Chebyshev neural adaptive control law is derived for the suppression of limit cycle oscillations (LCOs) of the prototypical wing. For this derivation SDU decomposition of the high-frequency constant gain matrix is utilized for obtaining a singularity free controller. Then for a multi-input aeroelastic system with state dependent input matrix, a higher-order robust sliding mode control law for finite-time stabilization is derived. This is followed by the design of a suboptimal controller based on the state-dependent Riccati equation (SDRE) method. Finally, a suboptimal control law is designed for the control of the aerolelastic system, based dierential game theory. In this approach, the wind gust is treated as an adversary which tries to destabilize system. These control algorithms are simulated using MATLAB and SIMULINK to verify their performance. Results show that the designed controllers are effective in suppressing the limit cycle oscillations.
机译:现代飞机表现出机翼-岩石现象和气动弹性失稳。通过复杂的非线性微分方程来描述Wingrock(侧倾单自由度运动)和气动系统(两个自由度)的行为。这些系统动力学的非线性导致超出飞机临界速度的极限循环振荡。机翼岩石的爆发和气动弹性的不稳定性限制了飞机的性能,甚至可能导致灾难性后果。因此,控制机翼-岩石运动和稳定气动弹性系统很重要。过去,已经进行了数项研究,并获得了实验和分析结果来解释风洞试验中的机翼-岩石和气动弹性现象,并且还得出了控制系统。大型飞行包络线中的飞机,其中会出现复杂的不确定的空气动力学非线性,从而导致飞机机翼不稳定和颤动。为了控制机翼-岩石运动和稳定气动弹性不稳定性,设计了新的控制系统。由于机翼-岩石运动和气动弹性系统的非线性动力学建模不精确,因此控制算法必须对模型不确定性不敏感。确定性系统的控制理论显然不适用于不确定性系统。为了稳定机翼,设计了两种非确定性等效自适应(NCEA)律。第一控制系统包括速度梯度自适应定律的有限形式实现,而第二控制器基于浸入式和不变性(I&I)理论。对于配备有前沿和后沿控制面的非线性多输入多输出(MIMO)气动弹性系统,设计了四种不同的控制系统。首先,推导了一种切比雪夫神经自适应控制定律,用于抑制原型机翼的极限循环振荡(LCO)。对于该推导,利用高频恒定增益矩阵的SDU分解来获得无奇点控制器。然后,针对具有状态依赖输入矩阵的多输入气动弹性系统,推导了用于有限时间稳定的高阶鲁棒滑模控制律。接下来是基于状态依赖的Riccati方程(SDRE)方法的次优控制器设计。最后,基于差分博弈论,设计了一种非最优控制律来控制气动弹性系统。在这种方法中,阵风被视为试图破坏系统稳定性的对手。使用MATLAB和SIMULINK对这些控制算法进行了仿真,以验证其性能。结果表明,所设计的控制器可有效抑制极限循环振荡。

著录项

  • 作者

    Ghorawat, Prince.;

  • 作者单位

    University of Nevada, Las Vegas.;

  • 授予单位 University of Nevada, Las Vegas.;
  • 学科 Electrical engineering.
  • 学位 M.S.E.E.
  • 年度 2015
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号