首页> 外文学位 >Geometric methods for control of nonholonomic mechanical systems with applications to the control moment gyroscope and wheeled mobile robots.
【24h】

Geometric methods for control of nonholonomic mechanical systems with applications to the control moment gyroscope and wheeled mobile robots.

机译:用于控制非完整机械系统的几何方法及其在控制力矩陀螺仪和轮式移动机器人中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The advantage of geometric dynamics analysis over the classical analysis method is that geometric method is independent of the choice of coordinates. The work, presented here, applies differential geometry for analysis and control of underactuated dynamical systems which include mobile robots, aircraft systems, underwater vehicles, satellites and many more systems. In the first part we will model a class of wheeled mobile robots and for which geometric method is applied to trajectory tracking. In the second part of the dissertation, geometric method is applied to the control moment gyroscope mounted on an inverted pendulum. The control moment gyroscope inverted pendulum is originally modeled at Embry-Riddle Aeronautic University by Dr. Douglas Isenberg. Stability analysis and control law design is proposed. The first solution proposed uses collocated partial feedback linearization and then the dynamics are transformed into strict feedback form, a form suitable to apply backstepping method. This work appears in the Springer series Advances in Intelligent Systems and Computing [6]. The application of collocated partial feedback linearization due to Mark Spong, makes it easy to transform the system into a cascade of a linear and a nonlinear subsystems. Peaking phenomenon is an issue which is inherently present in interconnected subsystems; the manifestation of this phenomenon is sometimes observed as finite time escape. Finite time escape can excite unstable modes in the nonlinear subsystem. Peaking phenomenon is studied and a solution is proposed.;[6] Yawo H Amengonu, Yogendra P Kakad, and Douglas R Isenberg. The control moment gyroscope inverted pendulum. In Advances in Systems Science, pages 109--118. Springer, 2014.
机译:与经典分析方法相比,几何动力学分析的优势在于几何方法与坐标的选择无关。此处介绍的工作将微分几何学应用于欠驱动动力系统的分析和控制,该动力系统包括移动机器人,飞机系统,水下飞行器,卫星以及更多系统。在第一部分中,我们将为一类轮式移动机器人建模,并将其几何方法应用于轨迹跟踪。在论文的第二部分,将几何方法应用于安装在倒立摆上的控制力矩陀螺仪。控制力矩陀螺仪倒立摆最初是由Douglas Isenberg博士在Embry-Riddle航空大学建模的。提出了稳定性分析与控制规律设计。提出的第一个解决方案是使用并置的部分反馈线性化,然后将动力学转换为严格的反馈形式,这种形式适合于应用反推方法。这项工作出现在Springer系列的《智能系统和计算进展》 [6]中。由于马克·斯彭(Mark Spong)而导致的并置局部反馈线性化的应用,使将系统轻松转换为线性和非线性子系统的级联成为可能。峰值现象是互连子系统中固有的问题。这种现象的表现有时被看作是有限的时间逃逸。有限的时间逃逸会激发非线性子系统中的不稳定模式。研究了峰化现象并提出了解决方案。[6] Yawo H Amengonu,Yogendra P Kakad和Douglas R Isenberg。控制力矩陀螺仪倒立摆。在系统科学进展中,第109--118页。施普林格,2014年。

著录项

  • 作者

    Amengonu, Yawo H.;

  • 作者单位

    The University of North Carolina at Charlotte.;

  • 授予单位 The University of North Carolina at Charlotte.;
  • 学科 Electrical engineering.;Robotics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 100 p.
  • 总页数 100
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号