首页> 外文学位 >A Model Framework to Estimate the Fraud Probability of Acquiring Merchants.
【24h】

A Model Framework to Estimate the Fraud Probability of Acquiring Merchants.

机译:估算商户欺诈可能性的模型框架。

获取原文
获取原文并翻译 | 示例

摘要

Using historical data from the third-party payment acquiring industry, I develop a statistical model to predict the probability of fraudulent transactions by the merchants. The model consists of two levels of analysis -- the first focuses on fraud detection at the store level, and the second focuses on fraud detection at the merchant level by aggregating store level data to the merchant level for merchants with multiple stores. My purpose is to put the model into business operations, helping to identify fraudulent merchants at the time of transactions and thus mitigate the risk exposure of the payment acquiring businesses. The model developed in this study is distinct from existing fraud detection models in three important aspects. First, it predicts the probability of fraud at the merchant level, as opposed to at the transaction level or by the cardholders. Second, it is developed by applying machine learning algorithms and logistical regressions to all the transaction level and merchant level variables collected from real business operations, rather than relying on the experiences and analytical abilities of business experts as in the development of traditional expert systems. Third, instead of using a small sample, I develop and test the model using a huge sample that consists of over 600,000 merchants and 10 million transactions per month. I conclude this study with a discussion of the model's possible applications in practice as well as its implications for future research.
机译:利用来自第三方支付获取行业的历史数据,我开发了一个统计模型来预测商人进行欺诈性交易的可能性。该模型包含两个分析级别:第一个分析重点是商店级别的欺诈检测,第二个分析重点是通过将商店级别的数据聚合到具有多个商店的商人的商人级别来关注商人级别的欺诈检测。我的目的是将模型引入业务运营中,以帮助在交易时识别欺诈商家,从而减轻支付业务的风险。本研究开发的模型在三个重要方面与现有的欺诈检测模型不同。首先,它预测了在商户级别而不是在交易级别或持卡人欺诈的可能性。其次,它是通过将机器学习算法和逻辑回归应用于从真实业务运营中收集的所有交易级别和商人级别变量而开发的,而不是像传统专家系统的开发那样依赖业务专家的经验和分析能力。第三,我不使用一个小样本,而是使用一个庞大的样本来开发和测试该模型,该样本每月包含60万以上的商人和1000万笔交易。在结束本研究时,将讨论该模型在实践中的可能应用及其对未来研究的影响。

著录项

  • 作者

    Zhou, Ye.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Business administration.;Banking.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 69 p.
  • 总页数 69
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号