首页> 外文学位 >Molecular sensing and imaging of human disease cells and their responses to biochemical stimuli.
【24h】

Molecular sensing and imaging of human disease cells and their responses to biochemical stimuli.

机译:人类疾病细胞的分子传感和成像及其对生化刺激的反应。

获取原文
获取原文并翻译 | 示例

摘要

Advancement in microscopic and spectroscopic techniques could significantly improve our ability in the study and diagnosis of diseases. Especially, being able to image and detect human diseases at the cellular and molecular level allows people to diagnose diseases at early stages and to study the molecular mechanisms behind various diseases. Currently, histopathological techniques are most widely used for prognosis and diagnosis of human diseases. However, conventional histopathology requires a complex process of sample preparation, which limits the diagnostic efficiency of this technique. More importantly, it requires fixation of tissue or cell sample, making it unsuitable for the study of dynamic cellular activities in the progress of diseases. This dissertation mainly discusses the progress in development of noninvasive imaging techniques that can be applied to study human diseases at the cellular level.;One approach is to use atomic force microscopy (AFM) and Raman spectroscopy to quantitatively measure the biomechanical and biochemical properties of cells, and then use these properties to differentiate between different cell types, or cells at different states. Here we have utilized our tandem AFM-Raman spectroscopy system to differentiate between cancerous and healthy human lung epithelial cells, and monitor their different responses to anticancer drug treatments. Generally, this technique (AFM-Raman) can serve as a complementary approach to study various diseased cells, providing additional information to help doctors identify diseases at an early stage and investigate the progress of diseases.;Another approach is specifically target and image disease marker molecules using advanced microscopic and spectroscopic techniques. Epidermal growth factor receptor (EGFR), as a cancer marker molecule, has been used as a model to develop noninvasive imaging methods. A nanoparticle-based imagine probe has been synthesized for specific imaging of EGFR at a single cell surface using surface-enhance Raman spectroscopy (SERS). Due to the noninvasive feature of SERS, it can monitor the receptor-mediated endocytosis of a nanoparticle in real time. Furthermore, an AFM-based simultaneous Topography and RECognition (TREC) imaging technique has been developed to localize EGFR subcellular distribution with nanoscale resolution. This TREC technique exhibits potential to monitor the binding between EGFR and its ligands at single molecule level.;A multimodal imaging nanoprobe, which integrates different imaging modalities into one single nanoparticle, can incorporate advantages and compensate for weaknesses of respective imaging techniques. In this dissertation, we have functionalized a previously reported nanoprobe for magnetic resonance imaging (MRI), trying to incorporate SERS function into this probe to realize MRI-SERS bimodal imaging. We have tested the SERS performance of the probe by using it to detect EGFR in three human cancer cell lines. This nanoprobe demonstrates the potential for in vivo MRI-SERS bimodal imaging with improved sensitivity from SERS. In addition, we have synthesized another composite nanoprobe for SERS-fluorescence bimodal imaging of a fat-responsive G protein-coupled receptor 120 (GPR120). Fluorescence is used as a fast indicator while SERS is for accurate localization of GPR120. Using this probe, we can also quantitatively measure the changes of GPR120 activities in response to fatty acid binding, showing the potential to study the molecular mechanism of fatty acid chemoreception.
机译:显微和光谱技术的进步可以显着提高我们在疾病研究和诊断中的能力。尤其是,能够在细胞和分子水平上对人类疾病进行成像和检测,使人们能够在早期阶段诊断疾病​​并研究各种疾病背后的分子机制。当前,组织病理学技术最广泛地用于人类疾病的预后和诊断。然而,常规的组织病理学需要复杂的样品制备过程,这限制了该技术的诊断效率。更重要的是,它需要固定组织或细胞样本,使其不适合研究疾病进展中的动态细胞活动。本文主要讨论了可用于在细胞水平上研究人类疾病的无创成像技术的进展。一种方法是使用原子力显微镜(AFM)和拉曼光谱法定量测量细胞的生物力学和生化特性,然后使用这些属性来区分不同的单元格类型或处于不同状态的单元格。在这里,我们利用我们的串联AFM-拉曼光谱系统来区分癌性和健康人肺上皮细胞,并监测它们对抗癌药物治疗的不同反应。通常,这种技术(AFM-Raman)可以作为研究各种患病细胞的补充方法,提供附加信息以帮助医生及早发现疾病并研究疾病的进展。分子使用先进的显微镜和光谱技术。表皮生长因子受体(EGFR),作为癌症标记分子,已被用作开发非侵入性成像方法的模型。已经使用表面增强拉曼光谱(SERS)合成了基于纳米粒子的想象探针,用于在单个细胞表面对EGFR进行特殊成像。由于SERS的非侵入性功能,它可以实时监测受体介导的纳米颗粒的内吞作用。此外,已经开发了一种基于AFM的同时形貌和识别(TREC)成像技术,以纳米级分辨率定位EGFR亚细胞分布。这种TREC技术具有在单个分子水平上监测EGFR及其配体之间结合的潜力。多模态成像纳米探针将不同的成像方式整合到一个纳米粒子中,可以兼具优点并弥补各自成像技术的弱点。在本文中,我们已经对先前报道的用于磁共振成像(MRI)的纳米探针进行了功能化,试图将SERS功能整合到该探针中以实现MRI-SERS双峰成像。我们已经通过使用它检测三种人类癌细胞系中的EGFR来测试该探针的SERS性能。该纳米探针展示了具有增强的SERS敏感性的体内MRI-SERS双峰成像潜力。此外,我们已经合成了另一种复合纳米探针,用于脂肪响应性G蛋白偶联受体120(GPR120)的SERS荧光双峰成像。荧光用作快速指示剂,而SERS用于精确定位GPR120。使用该探针,我们还可以定量测量响应于脂肪酸结合的GPR120活性的变化,显示了研究脂肪酸化学感受的分子机制的潜力。

著录项

  • 作者

    Xiao, Lifu.;

  • 作者单位

    Utah State University.;

  • 授予单位 Utah State University.;
  • 学科 Biomedical engineering.;Oncology.;Medical imaging.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号