首页> 外文学位 >Aerothermodynamic optimization of Earth entry blunt body heat shields for Lunar and Mars return.
【24h】

Aerothermodynamic optimization of Earth entry blunt body heat shields for Lunar and Mars return.

机译:月球和火星返回的地球入口钝体隔热罩的空气热力学优化。

获取原文
获取原文并翻译 | 示例

摘要

A differential evolutionary algorithm has been executed to optimize the hypersonic aerodynamic and stagnation-point heat transfer performance of Earth entry heat shields for Lunar and Mars return manned missions with entry velocities of 11 and 12.5 km/s respectively. The aerothermodynamic performance of heat shield geometries with lift-to-drag ratios up to 1.0 is studied. Each considered heat shield geometry is composed of an axial profile tailored to fit a base cross section. Axial profiles consist of spherical segments, spherically blunted cones, and power laws. Heat shield cross sections include oblate and prolate ellipses, rounded-edge parallelograms, and blendings of the two. Aerothermodynamic models are based on modified Newtonian impact theory with semi-empirical correlations for convection and radiation. Multi-objective function optimization is performed to determine optimal trade-offs between performance parameters. Objective functions consist of minimizing heat load and heat flux and maximizing down range and cross range.;Results indicate that skipping trajectories allow for vehicles with L/D = 0.3, 0.5, and 1.0 at lunar return flight conditions to produce maximum cross ranges of 950, 1500, and 3000 km respectively before Qs,tot increases dramatically. Maximum cross range increases by ∼20% with an increase in entry velocity from 11 to 12.5 km/s. Optimal configurations for all three lift-to-drag ratios produce down ranges up to approximately 26,000 km for both lunar and Mars return. Assuming a 10,000 kg mass and L/D = 0.27, the current Orion configuration is projected to experience a heat load of approximately 68 kJ/cm2 for Mars return flight conditions. For both L/D = 0.3 and 0.5, a 30% increase in entry vehicle mass from 10,000 kg produces a 20-30% increase in Qs,tot. For a given L/D, highly-eccentric heat shields do not produce greater cross range or down range. With a 5 g deceleration limit and L/D = 0.3, a highly oblate cross section with an eccentricity of 0.968 produces a 35% reduction in heat load over designs with zero eccentricity due to the eccentric heat shield's greater drag area that allows the vehicle to decelerate higher in the atmosphere. In this case, the heat shield's drag area is traded off with volumetric efficiency while fulfilling the given set of mission requirements. Additionally, the high radius-of-curvature of the spherical segment axial profile provides the best combination of heat transfer and aerodynamic performance for both entry velocities and a 5 g deceleration limit.
机译:已经执行了差分进化算法,以优化分别以11和12.5 km / s的进入速度进行月球和火星返回载人飞行任务的地球进入隔热罩的高超音速空气动力学和驻点传热性能。研究了升降比高达1.0的隔热屏几何形状的空气动力学性能。每种考虑的隔热板几何形状均由轴向轮廓组成,这些轮廓经调整以适合基础横截面。轴向轮廓由球形段,球形钝锥和幂定律组成。隔热罩的横截面包括扁长椭圆形和长椭圆形,圆角平行四边形以及两者的混合。空气热力学模型基于改进的牛顿碰撞理论,具有对流和辐射的半经验相关性。执行多目标函数优化以确定性能参数之间的最佳折衷。目标函数包括最小化热负荷和热通量以及最大化下距和跨距。结果表明,跳过轨迹允许在月球回飞条件下L / D = 0.3、0.5和1.0的车辆产生最大950的跨距Qs之前的1500公里和3000公里,tot急剧增加。随着进入速度从11 km / s增加到最大,最大跨距增加了约20%。对于月球和火星返回,所有三种升/降比的最佳配置均可产生约26,000 km的下降范围。假设质量为10,000千克,L / D = 0.27,则对于火星回程飞行条件,当前的Orion配置预计将承受约68 kJ / cm2的热负荷。对于L / D = 0.3和0.5,从10,000千克增加30%的入门车辆质量会使Qs,tot增加20-30%。对于给定的L / D,高偏心隔热板不会产生较大的交叉范围或向下范围。在5 g的减速极限和L / D = 0.3的情况下,偏心率为0.968的高扁截面比偏心率为零的设计产生的热负荷降低了35%,这是因为偏心挡热板的阻力区域更大,使车辆能够在大气中减速。在这种情况下,在满足给定的任务要求的同时,还要权衡隔热板的阻力区域和容积效率。此外,球形段轴向轮廓的高曲率半径为入口速度和5 g的减速极限提供了传热和空气动力学性能的最佳组合。

著录项

  • 作者

    Johnson, Joshua E.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 286 p.
  • 总页数 286
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

  • 入库时间 2022-08-17 11:37:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号