首页> 外文期刊>Journal of Spacecraft and Rockets >Mars Science Laboratory Heat Shield Aerothermodynamics: Design and Reconstruction
【24h】

Mars Science Laboratory Heat Shield Aerothermodynamics: Design and Reconstruction

机译:火星科学实验室隔热板空气热力学:设计与重构

获取原文
获取原文并翻译 | 示例
           

摘要

The Mars Science Laboratory heat shield was designed to withstand a fully turbulent heat pulse using information from ground testing and computational analysis on a preflight design trajectory. Instrumentation on the flight heat shield measured in-depth temperatures to permit reconstruction of the surface heating. The data indicate that boundary-layer transition occurred at five of seven measurement locations before peak heating. Data oscillations at three pressure measurement locations may also indicate transition. This paper presents the heat shield temperature and pressure data, possible explanations for the timing of boundary-layer transition, and a comparison of reconstructed and computational heating on the actual trajectory. A smooth-wall boundary-layer Reynolds number that was used to predict transition is compared with observed transition at various heat shield locations. A single transition Reynolds number criterion does not uniformly explain the timing of boundary-layer transition observed during flight A roughness-based Reynolds number suggests that transition due to discrete or distributed roughness elements occurred. However, the distributed roughness height from acreage heat shield material would have needed to be larger than expected. The instrumentation confirmed the predicted location of maximum turbulent heat flux near the lee-side shoulder. The reconstructed heat flux at that location is bounded by smooth-wall turbulent conective heating, indicating that a significant augmentation due to surface roughness did not occur. Turbulent heating on the downstream side of the heat shield nose exceeded smooth-wall convective levels, assuming a supercatalytic surface, indicating that roughness may have augmented heating. The stagnation region heating also exceeded calculated convective heating; the cause of elevated heating may be attributed to a combination of shock-layer radiation and a heating augmentation of unknown origin that was also evident in ground test data.
机译:火星科学实验室的隔热板经过设计,可利用来自地面测试和飞行前设计轨迹上的计算分析信息来承受完全湍流的热脉冲。飞行挡热板上的仪器测量了深度温度,以允许重建表面加热。数据表明边界层转变发生在峰值加热之前的七个测量位置中的五个位置。在三个压力测量位置的数据振荡也可能指示过渡。本文介绍了隔热屏的温度和压力数据,可能的边界层过渡时间说明,以及在实际轨迹上的重建和计算加热的比较。将用于预测过渡的光滑壁边界层雷诺数与在各种隔热屏位置观察到的过渡进行比较。单个跃迁雷诺数准则不能统一解释飞行过程中观察到的边界层跃迁的时间。基于粗糙度的雷诺数表明,由于离散或分布的粗糙度元素而导致的跃迁。但是,来自面积隔热屏材料的分布粗糙度高度将需要大于预期。仪器确认了在背侧肩附近最大湍流通量的预计位置。在该位置重建的热通量受光滑壁湍流对流加热的限制,这表明未发生由于表面粗糙度引起的显着增大。假定超催化表面,隔热罩鼻梁下游侧的湍流加热超过了光滑壁的对流水平,这表明粗糙度可能增加了加热。停滞区域加热也超过了计算的对流加热;升温的原因可能是由于冲击层辐射和未知来源的热量增加的结合,这在地面测试数据中也很明显。

著录项

  • 来源
    《Journal of Spacecraft and Rockets》 |2014年第4期|1106-1124|共19页
  • 作者单位

    NASA Langley Research Center, Hampton, Virginia 23681;

    NASA Langley Research Center, Hampton, Virginia 23681;

    NASA Langley Research Center, Hampton, Virginia 23681;

    NASA Ames Research Center, Moffett Field, California 94035;

    ERC, Inc., Moffett Field, California 94035;

    Georgia Institute of Technology, Atlanta, Georgia 30332;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号