首页> 外文学位 >Toward therapeutic nanoassemblies: The design and modeling of protein-protein interactions.
【24h】

Toward therapeutic nanoassemblies: The design and modeling of protein-protein interactions.

机译:迈向治疗性纳米组装:蛋白质与蛋白质相互作用的设计和建模。

获取原文
获取原文并翻译 | 示例

摘要

Unraveling the nanoscale processes of biological pathways via the testing, replication, and visualization of the underlying mechanisms remains a persistent challenge in the study of these critical life-governing systems. Recent advances in the field of chemically induced dimerization have unlocked multiple tools for the exploration of these facets of biology, including the development of switchable signaling systems, assertion of control over protein localization in the cell, and regulation of gene expression. An additional revelation through protein complexation by chemical induction is the construction of multivalent protein-based nanostructures, capable of bearing multiple targeting agents. However, stochastic assembly of these proteins has proven unsatisfactory in generating homogeneous populations. Herein, we have taken the initial steps toward developing a protein-based biomolecular language for nanostructural assembly. Through gel filtration analysis, we have characterized the ability of interfacial point mutations to modulate the stability of a bis-methotrexate (bis-MTX) induced E. coli dihydrofolate reductase (DHFR) dimer over a dynamic range of 1.5 kcal/mol. Furthermore, we have employed single-molecule fluorescence assays to demonstrate the stabilization of a heterodimeric DHFR dimer, yielding 4-fold selectivity for the heterodimer over either corresponding homodimer.;In addition to our experimental characterization of the chemically induced DHFR dimer, we have also taken steps toward the construction of a tripartite computational model of dimerization in an effort to predict the effects of further mutations. We have tested a number of molecular mechanics force fields against quantum mechanical benchmarks and discovered that the MMFF94, OPLS2005, and AMBER force fields yield the most accurate electrostatic and configurational treatment of the complex bis-MTX dimerizer. While initial attempts at calculating the binding free energy of the macromolecular complex have been unsuccessful, we have gleaned important insights into the complexities of modeling this three-body system. The advances described within the following work delineate important aspects of protein interface remodeling in a chemically induced system and provide an avenue toward the further development of both a computational model of protein interactions and the future directed assembly of protein based materials and therapeutic nanostructures.
机译:在这些关键的生命管理系统的研究中,通过对潜在机制的测试,复制和可视化来揭示生物途径的纳米级过程仍然是一个持续的挑战。化学诱导二聚化领域的最新进展为探索生物学的这些方面解锁了多种工具,包括可切换信号系统的开发,对细胞中蛋白质定位控制的主张以及基因表达的调控。通过化学诱导进行蛋白质复合的另一个启示是构建了多价基于蛋白质的纳米结构,该结构能够携带多种靶向剂。但是,已证明这些蛋白质的随机组装不能令人满意地产生同质种群。在本文中,我们已朝着开发用于纳米结构组装的基于蛋白质的生物分子语言迈出了第一步。通过凝胶过滤分析,我们表征了界面点突变在1.5 kcal / mol动态范围内调节双甲氨蝶呤(bis-MTX)诱导的大肠杆菌二氢叶酸还原酶(DHFR)二聚体稳定性的能力。此外,我们已经使用单分子荧光测定法证明了异二聚体DHFR二聚体的稳定性,相对于任一相应的同二聚体,该异二聚体的选择性提高了4倍;除了对化学诱导的DHFR二聚体进行实验表征外,我们还具有为预测进一步突变的影响,已采取步骤建立了二聚化的三方计算模型。我们已经针对量子力学基准测试了许多分子力学力场,并发现MMFF94,OPLS2005和AMBER力场对复杂的bis-MTX二聚体产生了最准确的静电和构型处理。尽管最初的计算大分子复合物的结合自由能的尝试没有成功,但我们已经获得了对三体系统建模的复杂性的重要见解。在以下工作中描述的进展描述了化学诱导系统中蛋白质界面重塑的重要方面,并为进一步发展蛋白质相互作用的计算模型以及未来基于蛋白质的材料和治疗性纳米结构的定向组装提供了途径。

著录项

  • 作者

    White, Brian Richard.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Biology Molecular.;Chemistry Pharmaceutical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 269 p.
  • 总页数 269
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号