首页> 外文学位 >Parallel algorithms and VLSI architectures for robotics and assembly scheduling.
【24h】

Parallel algorithms and VLSI architectures for robotics and assembly scheduling.

机译:机器人和装配调度的并行算法和VLSI架构。

获取原文
获取原文并翻译 | 示例

摘要

This research addresses two intensive computational problems of designing VLSI architectures for robotic computations and of implementing the assembly scheduling problem on a highly parallel artificial neural network. In designing VLSI architectures for a complex computational robotic task, the functional decomposition of the task into a set of computational modules can be represented as an acyclic data flow graph (ADFG) which can be mapped into the VLSI architecture by an existing systolization procedure. An efficient graph decomposition technique has been developed which utilizes the critical path concept to decompose a large-scale directed ADFG into a set of connected subgraphs, and the integer linear optimization technique can be used to solve the buffer assignment problem in each subgraph in pseudo-polynomial time.;The other equally important computational problem is the NP -complete assembly scheduling problem which is difficult to be solved by traditional machines. The real-time assembly scheduling problem is characterized by a bipartite graph model and re-formulated as a two-stage optimization: the linear assignment problem for the optimal arrangement of part-feeding components in the assembly system and the constrained traveling salesman problem (TSP) for the final ordering problem. To solve this assembly scheduling problem effectively, massively parallel network systems based on neural network models are exploited to achieve the real-time computational requirement. A computer simulation of an assembly scheduling problem of size 20 was conducted to verify the performance of the neural network implementation.
机译:这项研究解决了两个密集的计算问题,即设计用于机器人计算的VLSI架构以及在高度并行的人工神经网络上实现装配调度问题。在为复杂的计算机器人任务设计VLSI体系结构时,可以将该任务分解为一组计算模块的功能表示为非循环数据流图(ADFG),该数据可以通过现有的系统化过程映射到VLSI体系结构中。已开发出一种有效的图分解技术,该技术利用关键路径概念将大规模有向ADFG分解为一组连接的子图,并且整数线性优化技术可用于解决伪子中每个子图的缓冲区分配问题。多项式时间。另一个同样重要的计算问题是NP完全装配调度问题,这是传统机器难以解决的。实时装配计划问题的特征在于二部图模型,并重新设计为两阶段优化:用于在装配系统中优化零件进给组件布置的线性分配问题和受约束的旅行商问题(TSP) )的最终订购问题。为了有效地解决该装配调度问题,利用基于神经网络模型的大规模并行网络系统来实现实时计算需求。进行了大小为20的装配调度问题的计算机仿真,以验证神经网络实现的性能。

著录项

  • 作者

    Chang, Po-Rong.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1988
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号