首页> 外文学位 >Design, fabrication, and characterization of terahertz quantum cascade lasers.
【24h】

Design, fabrication, and characterization of terahertz quantum cascade lasers.

机译:太赫兹量子级联激光器的设计,制造和表征。

获取原文
获取原文并翻译 | 示例

摘要

Quantum cascade lasers are different from conventional semiconductor lasers. They use only one hand for population inversion, typically the conduction band. The electrons move through many cascaded regions, giving off a photon in each region. In this way, one electron can produce several photons. In addition, by bandstructure engineering, one material system can lase at almost any wavelength in the mid and far infrared spectrum. For terahertz quantum cascade lasers, the GaAs/AlGaAs material system has successfully produced lasing action.;In the terahertz regime, conventional dielectric waveguides cannot be used. Instead, metals and highly doped semiconductors provide confinement using surface plasmons. The two most popular waveguide geometries are the metal-semiconductor-metal (MSM) and the metal-semiconductor-doped semiconductor (MSDS) waveguides. The MSM waveguides provide a larger confinement factor, with the disadvantage of smaller output powers and a more complicated fabrication process.;To model and design the electronic bandstructure of the active region of quantum cascade lasers, we use the finite difference method to solve Schrodinger's equation and Poisson's equation self-consistently. Using the rate equations in steady state, the peak optical gain is calculated. To model the optical modes of the waveguide, we use a propagation matrix approach. Using this method, we can determine the loss and confinement factor, which, with the mirror loss, gives us the threshold material gain. We have found that for the MSDS waveguide, the substrate thickness can have a significant impact on the waveguide characteristics. In addition, under certain circumstances, the first higher-order mode will be the lasing mode.;After the lasers are grown, we fabricate them into ridge waveguides of various lengths and widths. We describe the fabrication and processing of MSM and MSDS quantum cascade lasers. We detail several wafer bonding techniques as well as the details of the etching procedure. We demonstrate our successful fabrication and testing of the lasers near 3 terahertz. We then characterize the electrical and optical properties as a function of temperature from 4.2 K to 55 K. We find that the lasing threshold current density is 187 A/cm 2 and the threshold voltage is 5.4 V at a temperature of 4.2 K for a waveguide with a length of 3 mm. We find that the lasing threshold current density is 200 A/cm2 and the threshold voltage is 2.0 V at a temperature of 4.2 K for a waveguide with a length of 1 mm. The threshold current density increases to 290 A/cm2 and 250 A/cm 2 at 55 K for the 3 mm and 1 mm waveguides, respectively. In addition, we determined that each period had a quantum efficiency of 32% up to 20 K.;We also perform an experimental study of the role of the substrate on the optical and electrical properties. We find that the effect of the substrate thickness on the laser performance is dependent on other waveguide parameters. In particular, if the plasma layer is thick enough, the role of the substrate should be minimal. We use two-dimensional finite element modeling (FEM) to determine the threshold material gain coefficient and compare it to the experimental results of the threshold current density. We find that the threshold current density is roughly constant until the substrate thickness becomes smaller than 150 microm.
机译:量子级联激光器不同于传统的半导体激光器。他们只用一只手进行总体反转,通常是导带。电子移动通过许多级联区域,在每个区域中释放出一个光子。这样,一个电子可以产生几个光子。此外,通过带状结构工程,一种材料系统可以发射中红外光谱和远红外光谱中几乎任何波长的激光。对于太赫兹量子级联激光器,GaAs / AlGaAs材料系统已经成功产生了激光作用。在太赫兹状态下,不能使用常规的介质波导。取而代之的是,金属和高度掺杂的半导体使用表面等离子体激元提供了限制。两种最流行的波导几何形状是金属半导体金属(MSM)和掺杂金属半导体的半导体(MSDS)波导。 MSM波导具有较大的限制因子,但缺点是输出功率较小且制造工艺较复杂。为了对量子级联激光器有源区的电子能带结构进行建模和设计,我们采用了有限差分法求解薛定inger方程与泊松方程自洽。使用稳态下的速率方程式,可以计算出峰值光学增益。为了建模波导的光学模式,我们使用传播矩阵方法。使用这种方法,我们可以确定损耗和限制因子,再加上镜面损耗,就可以得到阈值材料增益。我们已经发现,对于MSDS波导,衬底厚度可能会对波导特性产生重大影响。此外,在某些情况下,第一个高阶模式将是激光模式。在激光器生长之后,我们将它们制作成各种长度和宽度的脊形波导。我们描述了MSM和MSDS量子级联激光器的制造和加工。我们详细介绍了几种晶圆键合技术以及蚀刻程序的细节。我们展示了成功制造和测试3太赫兹附近的激光器的方法。然后,我们将电学和光学特性表征为温度从4.2 K到55 K的函数。我们发现,在波导温度为4.2 K时,激射阈值电流密度为187 A / cm 2,阈值电压为5.4 V长度为3毫米。我们发现,对于长度为1 mm的波导,在4.2 K的温度下,激射阈值电流密度为200 A / cm2,阈值电压为2.0V。对于3 mm和1 mm的波导,在55 K时,阈值电流密度分别增加到290 A / cm2和250 A / cm 2。此外,我们确定每个周期在20 K以下的量子效率为32%。我们还对底物在光学和电学性质上的作用进行了实验研究。我们发现衬底厚度对激光器性能的影响取决于其他波导参数。特别地,如果等离子体层足够厚,则基板的作用应该最小化。我们使用二维有限元建模(FEM)确定阈值材料增益系数,并将其与阈值电流密度的实验结果进行比较。我们发现阈值电流密度大致恒定,直到基板厚度小于150微米。

著录项

  • 作者

    Petschke, Adam Christopher.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 83 p.
  • 总页数 83
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号