首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Design Fabrication and Experimental Characterization of Plasmonic Photoconductive Terahertz Emitters
【2h】

Design Fabrication and Experimental Characterization of Plasmonic Photoconductive Terahertz Emitters

机译:等离子体光导太赫兹发射极的设计制作和实验表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this video article we present a detailed demonstration of a highly efficient method for generating terahertz waves. Our technique is based on photoconduction, which has been one of the most commonly used techniques for terahertz generation 1-8. Terahertz generation in a photoconductive emitter is achieved by pumping an ultrafast photoconductor with a pulsed or heterodyned laser illumination. The induced photocurrent, which follows the envelope of the pump laser, is routed to a terahertz radiating antenna connected to the photoconductor contact electrodes to generate terahertz radiation. Although the quantum efficiency of a photoconductive emitter can theoretically reach 100%, the relatively long transport path lengths of photo-generated carriers to the contact electrodes of conventional photoconductors have severely limited their quantum efficiency. Additionally, the carrier screening effect and thermal breakdown strictly limit the maximum output power of conventional photoconductive terahertz sources. To address the quantum efficiency limitations of conventional photoconductive terahertz emitters, we have developed a new photoconductive emitter concept which incorporates a plasmonic contact electrode configuration to offer high quantum-efficiency and ultrafast operation simultaneously. By using nano-scale plasmonic contact electrodes, we significantly reduce the average photo-generated carrier transport path to photoconductor contact electrodes compared to conventional photoconductors 9. Our method also allows increasing photoconductor active area without a considerable increase in the capacitive loading to the antenna, boosting the maximum terahertz radiation power by preventing the carrier screening effect and thermal breakdown at high optical pump powers. By incorporating plasmonic contact electrodes, we demonstrate enhancing the optical-to-terahertz power conversion efficiency of a conventional photoconductive terahertz emitter by a factor of 50 10.
机译:在此视频文章中,我们详细演示了生成太赫兹波的高效方法。我们的技术基于光电导,这已成为太赫兹 1-8 产生的最常用技术之一。光电导发射器中的太赫兹产生是通过泵浦超快光电导体和脉冲或外差激光照明来实现的。跟随泵浦激光器的包络线的感应光电流被路由到连接到光电导体接触电极的太赫兹辐射天线,以产生太赫兹辐射。尽管理论上光导发射体的量子效率可以达到100%,但是光生载流子到传统光电导体接触电极的相对较长的传输路径长度严重限制了其量子效率。此外,载流子屏蔽效应和热击穿严格限制了常规光电导太赫兹源的最大输出功率。为了解决常规光电导太赫兹发射器的量子效率限制,我们开发了一种新的光电导发射器概念,该概念结合了等离子体接触电极配置,可同时提供高量子效率和超快操作。与常规光电导体 9 相比,通过使用纳米级等离子体接触电极,我们显着减少了光生载流子向光电导体接触电极的平均传输路径。我们的方法还允许增加光电导体的有效面积,而不会显着增加天线的电容负载,通过防止载流子屏蔽效应和高光泵浦功率下的热击穿来提高最大太赫兹辐射功率。通过结合等离子体接触电极,我们证明了将常规光电导太赫兹发射器的光-太赫兹功率转换效率提高了50 10

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号