首页> 外文学位 >Realisation of parallel (p,q) counters for high-speed array multipliers
【24h】

Realisation of parallel (p,q) counters for high-speed array multipliers

机译:高速数组乘法器的并行(p,q)计数器的实现

获取原文
获取原文并翻译 | 示例

摘要

With current trend towards single chip digital signal processors and the growing demand for more powerful and real time performance of such processors, further improvements in speed would need to be made on conventional iterative carry-save array (CSA) multipliers. Considerable increases in the speed of array multipliers can be achieved by adding more than one partial product bit at a time by employing higher order parallel(p,q) counters. This approach heavily depends on an efficient realisation of a counter, which ideally should have a delay and complexity comparable to that of a full-adder. An iterative array multiplier which employs a (5,3) counter was recently reported and based on similar techniques, a novel array Multiplier utilising (2,2,3) counter cells was developed in this project. The study shows that both the (5,3) counter and (2,2,3) counter architectures are quite close to conventional array multipliers from a VLSI implementation point of view. Assuming the counters operate at a comparable speed as a CSA full-adder, the (5,3) counter scheme is faster than conventional array multipliers by nearly a factor of two, while the (2.2.3) counter technique offers significant improvements for large operand wordlength. In this work, the (5,3) counter and (2,2,3) counter were studied, principally on the efficiency of operation speed and the viability of the array architectures in the fast bipolar ECL technology. For this purpose, a reconsideration of threshold logic, in view of the better IC processes of today as well as the well-proven cascade ECL technique was investigated. A novel threshold circuit technique based on partial use of negative weighted inputs is proposed to overcome the maximum fan-in weight limitation found in traditional threshold circuits. A method of mapping a logic function onto series gated ECL suitable for software implementation is presented. The work also includes the design of a 16 X 16-bit Booth-encoded multiplier and a test chip composed of ring oscillators, using state-of-the-art bipolar technology. Simulation results show that the most efficient realisation is the (2.2.3) counter cell implemented in series gated ECL using well-proven gates. Circuit simulations indicate the (2,2,3) counter to be nearly as fast as a CSA full-adder. With such a realisation of the (2,2,3) counter cell, significant improvements in the speed of the (2,2,3) multiplier over that of conventional CSA multiplier can be expected, especially for large operand wordlengths.
机译:随着单芯片数字信号处理器的当前趋势以及对此类处理器更强大和实时性能的需求不断增长,传统的迭代进位保存阵列(CSA)乘法器将需要进一步提高速度。通过采用高阶并行(p,q)计数器一次添加一个以上的部分乘积位,可以实现阵列乘法器速度的显着提高。这种方法在很大程度上取决于计数器的有效实现,理想情况下,计数器应具有与全加器相当的延迟和复杂性。最近报道了一种使用(5,3)计数器的迭代阵列乘法器,并且基于类似的技术,在该项目中开发了一种利用(2,2,3)计数器单元的新型阵列乘法器。研究表明,从VLSI实现的角度来看,(5,3)计数器和(2,2,3)计数器体系结构都非常接近常规阵列乘法器。假设计数器以与CSA全加器相当的速度运行,则(5,3)计数器方案比常规阵列乘法器快近两倍,而(2.2.3)计数器技术为大型计数器提供了显着改进操作数字长。在这项工作中,研究了(5,3)计数器和(2,2,3)计数器,主要研究了快速双极ECL技术中的运算速度效率和阵列架构的可行性。为此,鉴于当今更好的IC工艺以及行之有效的级联ECL技术,对阈值逻辑进行了重新考虑。提出了一种基于部分使用负加权输入的新颖阈值电路技术,以克服传统阈值电路中出现的最大扇入权重限制。提出了一种将逻辑功能映射到适用于软件实现的串联门控ECL的方法。这项工作还包括使用最新的双极技术设计一个16 X 16位Booth编码的乘法器和一个由环形振荡器组成的测试芯片。仿真结果表明,最有效的实现是使用经过充分验证的门在串联门ECL中实现的(2.2.3)计数单元。电路仿真表明,(2,2,3)计数器几乎与CSA全加器一样快。通过(2,2,3)计数单元的这种实现,可以预期(2,2,3)乘法器的速度比常规CSA乘法器的速度有显着提高,尤其是对于较大的操作数字长。

著录项

  • 作者

    Madon, Bakri.;

  • 作者单位

    University of London, University College London (United Kingdom).;

  • 授予单位 University of London, University College London (United Kingdom).;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 1990
  • 页码 246 p.
  • 总页数 246
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号