首页> 外文学位 >The automatic recognition of gestures.
【24h】

The automatic recognition of gestures.

机译:自动识别手势。

获取原文
获取原文并翻译 | 示例

摘要

Gesture-based interfaces, in which the user specifies commands by simple freehand drawings, offer an alternative to traditional keyboard, menu, and direct manipulation interfaces. The ability to specify objects, an operation, and additional parameters with a single intuitive gesture makes gesture-based systems appealing to both novice and experienced users.; Unfortunately, the difficulty in building gesture-based systems has prevented such systems from being adequately explored. This dissertation presents work that attempts to alleviate two of the major difficulties: the construction of gesture classifiers and the integration of gestures into direct-manipulation interfaces. Three example gesture-based applications were built to demonstrate this work.; Gesture-based systems require classifiers to distinguish between the possible gestures a user may enter. In the past, classifiers have often been hand-coded for each new application, making them difficult to build, change, and maintain. This dissertation applies elementary statistical pattern recognition techniques to produce gesture classifiers that are trained by example, greatly simplifying their creation and maintenance. Both single-path gestures (drawn with a mouse or stylus) and multiple-path gestures (consisting of the simultaneous paths of multiple fingers) may be classified. On a 1 MIPS workstation, a 30-class single-path recognizer takes 175 milliseconds to train (once the examples have been entered), and classification takes 9 milliseconds, typically achieving 97% accuracy. A method for classifying a gesture as soon as it is unambiguous is also presented.; This dissertation also describes GRANDMA, a toolkit for building gesture-based applications based on Smalltalk's Model/View/Controller paradigm. Using GRANDMA, one associates sets of gesture classes with individual views or entire view classes. A gesture class can be specified at runtime by entering a few examples of the class, typically 15. The semantics of a gesture class can be specified at runtime via a simple programming interface. Besides allowing for easy experimentation with gesture-based interfaces, GRANDMA sports a novel input architecture, capable of supporting multiple input devices and multi-threaded dialogues. The notion of virtual tools and semantic feedback are shown to arise naturally from GRANDMA's approach.
机译:基于手势的界面,用户可以通过简单的手绘图来指定命令,它是传统键盘,菜单和直接操作界面的替代方案。以单个直观手势指定对象,操作和其他参数的能力使基于手势的系统吸引新手和有经验的用户。不幸的是,构建基于姿势的系统的困难阻止了这种系统的充分探索。本文提出了旨在减轻两个主要困难的工作:姿势分类器的构造以及将姿势集成到直接操纵界面中。构建了三个基于手势的示例应用程序来演示这项工作。基于手势的系统需要分类器来区分用户可能输入的可能手势。过去,分类器通常是为每个新应用程序手动编码的,这使它们难以构建,更改和维护。本文运用基本的统计模式识别技术来产生手势分类器,并通过实例进行训练,大大简化了它们的创建和维护。可以对单路径手势(用鼠标或手写笔绘制)和多路径手势(由多个手指的同时路径组成)进行分类。在1个MIPS工作站上,一个30类的单路径识别器需要175毫秒的训练时间(一旦输入示例),而分类则需要9毫秒的时间,通常可以达到97%的准确性。还提出了一种用于将手势明确地分类的方法。本文还介绍了GRANDMA,这是一种基于Smalltalk的Model / View / Controller范例构建基于手势的应用程序的工具包。使用GRANDMA,可以将手势类集与单个视图或整个视图类相关联。可以在运行时通过输入手势类的一些示例(通常为15)来指定手势类。可以通过简单的编程接口在运行时指定手势类的语义。除了可以轻松地测试基于手势的界面之外,GRANDMA还具有一种新颖的输入架构,能够支持多个输入设备和多线程对话。事实证明,虚拟工具和语义反馈的概念自然是从GRANDMA的方法中产生的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号