首页> 外文学位 >Modeling and control of collective dynamics: From Schrodinger bridges to Optimal Mass Transport.
【24h】

Modeling and control of collective dynamics: From Schrodinger bridges to Optimal Mass Transport.

机译:集体动力学的建模和控制:从薛定inger桥到最优质量传输。

获取原文
获取原文并翻译 | 示例

摘要

We study modeling and control of collective dynamics. More specifically, we consider the problem of steering a particle system from an initial distribution to a final one with minimum energy control during some finite time window. It turns out that this problem is closely related to Optimal Mass Transport (OMT) and the Schrodinger bridge problem (SBP). OMT is concerned with reallocating mass from a specified starting distribution to a final one while incurring minimum cost. The SBP, on the other hand, seeks a most likely density flow to reconcile two marginal distributions with a prior probabilistic model for the flow. Both of these problems can be reformulated as those of controlling a density flow that may represent either a model for the distribution of a collection of dynamical systems or, a model for the uncertainty of the state of single dynamical system. This thesis is concerned with extensions of and point of contact between these two subjects, OMT and SBP. The aim of the work is to provide theory and tools for modeling and control of collections of dynamical systems. The SBP can be seen as a stochastic counterpart of OMT and, as a result, OMT can be recovered as the limit of the SBP as the stochastic excitation vanishes. The link between these two problems gives rise to a novel and fast algorithm to compute solutions of OMT as a suitable limit of SBP. For the special case where the marginal distributions are Gaussian and the underlying dynamics linear, the solution to either problem can be expressed as linear state feedback and computed explicitly in closed form.;A natural extension of the work in the thesis concerns OMT and the SBP on discrete spaces and graphs in particular. Along this line we develop a framework to schedule transportation of mass over networks. Control in this context amounts to selecting a transition mechanism that is consistent with initial and final marginal distributions. The SBP on graphs on the other hand can be viewed as an atypical stochastic control problem where, once again, the control consists in suitably modifying the prior transition mechanism. By taking the Ruelle-Bowen random walk as a prior, we obtain scheduling that tends to utilize all paths as uniformly as the topology allows. Effectively, a consequence of such a choice is reduced congestion and increased robustness. The paradigm of Schroedinger bridges as a mechanism for scheduling transport on networks can be adapted to weighted graphs. Thus, our approach may be used to design transportation plans that represent a suitable compromise between robustness and cost of transport.
机译:我们研究集体动力学的建模和控制。更具体地说,我们考虑了在某个有限的时间窗口内以最小的能量控制将粒子系统从初始分布转向最终的问题。事实证明,该问题与最佳质量运输(OMT)和薛定inger桥问题(SBP)密切相关。 OMT关心的是将质量从指定的开始分配重新分配到最终分配,同时产生最低成本。另一方面,SBP寻求一种最有可能的密度流,以用先验的流量概率模型来调和两个边际分布。这两个问题都可以重新表述为控制密度流的问题,它可以代表动力学系统集合的分布模型,也可以代表单个动力学系统状态的不确定性模型。本文涉及OMT和SBP这两个主题的扩展和接触点。这项工作的目的是为动力学系统的集合建模和控制提供理论和工具。 SBP可以看作是OMT的随机对应物,因此,随着随机激励的消失,OMT可以作为SBP的极限而恢复。这两个问题之间的联系产生了一种新颖且快速的算法,可以计算OMT的解作为SBP的合适极限。对于边际分布为高斯分布且基础动力学为线性的特殊情况,可以将任何一个问题的解决方案表示为线性状态反馈,并以封闭形式显式计算。;本文工作的自然扩展涉及OMT和SBP特别是在离散空间和图形上。沿着这条线,我们开发了一个框架来计划通过网络进行大规模运输。在这种情况下,控制等于选择与初始和最终边际分布一致的过渡机制。另一方面,图上的SBP可以看作是一个非典型的随机控制问题,该控制又一次在于适当地修改了先前的转换机制。通过将Ruelle-Bowen随机游走作为先验,我们获得的调度倾向于在拓扑结构允许的范围内统一利用所有路径。有效地,这种选择的结果是减少了拥塞并提高了鲁棒性。 Schroedinger桥的范式作为一种用于调度网络上的传输的机制,可以适用于加权图。因此,我们的方法可用于设计运输计划,该计划代表了鲁棒性和运输成本之间的适当折衷。

著录项

  • 作者

    Chen, Yongxin.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Electrical engineering.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号