首页> 外文学位 >Behavior of zonal ion drifts in low and middle latitude ionosphere.
【24h】

Behavior of zonal ion drifts in low and middle latitude ionosphere.

机译:在中低纬度电离层中纬向离子漂移的行为。

获取原文
获取原文并翻译 | 示例

摘要

The Earth's environment consists of a neutral and an ionized atmosphere. The neutral atmosphere can be divided by its temperature profile into the troposphere (0-12 km), the stratosphere (12-45 km), the mesosphere (45-85 km), the thermosphere (85-1000 km) and exosphere (>1000 km). The Earth's ionized atmosphere is typically divided by density and composition into the ionosphere (70-1000 km), the plasmasphere (1000 km to 4 Re for MLAT less than 60°), and the magnetosphere extending to nearly 8 Re on the dayside and to approximately 1000 Re on the nightside. The Earth's ionosphere does not get direct energy from the solar wind because it is shielded by its magnetic field. The region of geospace is dominated by Earth's magnetic field is called the magnetosphere and outermost edge of the magnetosphere, called the magnetopause is maintained by the charged particles from the solar wind flowing along the boundary. The largest energy transfer from the solar wind to the magnetosphere is driven by an electric field directed dawn to dusk.;This limited study shows that during large magnetic storms, ion drifts driven by the magnetosphere penetrate to latitudes as low as the dip equator on the dusk side and extend a few degrees equatorward of the auroral zone on the dawn side. A description of the evolution of the auroral precipitation and the zonal ion drifts at high latitudes during times of extreme storm activity is produced by applying some quantitative definitions that allow us to identify the expansion and penetration of the high-latitude zonal ion drifts to middle and low latitudes in the ionosphere. Times are identified when ion drifts driven from the magnetosphere exist at latitudes inside the plasmasphere and when regions below the auroral zone may be influenced by a disturbance dynamo. The resolved boundaries in the ion drifts and the electron precipitation allow us to distinguish penetration events from sub-auroral polarization fields. This limited study also shows that during large magnetic storms in the northern hemisphere dusk sector at 1800 MLT the equatorward extent of the region-2 current signature extends to as low as 39° MLAT. We have also figured out that at low and middle latitudes small variations in the magnetic perturbations that are removed as a baseline may represent reproducible storm-time signatures.
机译:地球环境由中性和电离的大气组成。中性大气按温度分布可分为对流层(0-12 km),平流层(12-45 km),中层层(45-85 km),热层(85-1000 km)和外层层(> 1000公里)。地球的电离大气层通常按密度和成分划分为电离层(70-1000 km),等离子层(对于MLAT小于60°为1000 km至4 Re),磁层在白天延伸至近8 Re,到大约在晚上在1000 Re。地球的电离层无法从太阳风中获取直接能量,因为它受到磁场的屏蔽。地球磁场的主要区域是地球磁场,称为磁层,磁层的最外边缘称为磁层顶,其由沿边界流动的太阳风中的带电粒子所维持。从太阳风到磁层的最大能量传递是由指向黎明到黄昏的电场驱动的;该有限的研究表明,在大磁暴期间,由磁层驱动的离子漂移会渗透到低纬度的低纬度。黄昏侧,在黎明侧延伸到极光区赤道几度。通过应用一些定量定义,可以描述极端纬度活动期间高纬度地区极光降水和纬向离子漂移的演变,从而使我们能够确定高纬度纬向离子漂移向中部和中部的扩展和渗透。电离层的低纬度。当从磁层驱动的离子漂移存在于等离子层内部的纬度处以及极光区以下的区域可能受到干扰发电机的影响时,就会确定时间。离子漂移和电子沉淀中的分辨边界使我们能够将穿透事件与极光下极化场区分开。这项有限的研究还表明,在北半球1800 MLT黄昏扇形的大磁暴期间,区域2电流特征的赤道范围扩展至低至39°MLAT。我们还发现,在低纬度和中纬度,作为基线被消除的磁扰动的细微变化可能表示可再现的风暴时间特征。

著录项

  • 作者

    Mohapatra, Sasmita.;

  • 作者单位

    The University of Texas at Dallas.;

  • 授予单位 The University of Texas at Dallas.;
  • 学科 Atmospheric Sciences.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 康复医学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号