首页> 外文学位 >Applications of algebraic number theory to cryptography.
【24h】

Applications of algebraic number theory to cryptography.

机译:代数数论在密码学中的应用。

获取原文
获取原文并翻译 | 示例

摘要

If two communication partners wish to engage in a private conversation across a public channel, they need to encrypt their messages to prevent an eavesdropper from discovering the contents of their conversation. To achieve this, the two parties must first agree on a common cryptographic key. Such a key cannot be distributed across an open channel, as this would enable an adversary to obtain the key and thus decrypt all communicated information. The problem of key exchange can be overcome in two ways. The partners can employ a public-key cryptosystem, i.e. use different keys for encryption and decryption, where the encryption key is publicly known and the decryption key is known only to the decrypter. Alternatively, they can communicate a sequence of messages according to a specific protocol that allow them to agree on a common key without revealing it to an opponent. This dissertation offers solutions to both approaches.;The first part of this thesis presents a generalization of several existing public-key cryptosystems. The difficulty of breaking the new scheme is equivalent to the problem of factoring a large integer, a task believed to be very difficult. This information regarding the security of the scheme represents an improvement over the well-known RSA public-key system. We describe the number theoretic fundamentals, present the algorithms required for the system together with their computational complexity, analyze the scheme's security, and finally discuss an implementation.;All conventional protocols for key exchange rely strongly on the structure of a group. Recently, for the first time, a modification of the standard protocol was suggested which does not use a group, but is based instead on the infrastructure of a real quadratic field. This loss of structure in the underlying set may increase the security of the scheme over that of previously known protocols. Part II of this thesis introduces the specifics of the new protocol. As before, we give the necessary number theoretic background, describe the algorithms and their complexity, present a complete approximation and error analysis, briefly discuss the security, and conclude with some computational results.
机译:如果两个通信伙伴希望通过公共渠道进行私人对话,则他们需要加密其消息,以防止窃听者发现他们的对话内容。为此,双方必须首先就通用的加密密钥达成一致。这样的密钥不能在开放信道上分配,因为这将使对手能够获取密钥并因此解密所有通信的信息。密钥交换问题可以通过两种方式解决。伙伴可以采用公共密钥密码系统,即使用不同的密钥进行加密和解密,其中加密密钥是公开已知的,而解密密钥仅对于解密者是已知的。或者,他们可以根据特定协议传达一系列消息,从而使他们可以就公用密钥达成一致而不会向对手透露。本文为这两种方法提供了解决方案。本文的第一部分对几种现有的公钥密码系统进行了概括。打破新方案的难度等同于分解一个大整数的问题,这一任务被认为是非常困难的。有关方案安全性的此信息表示对众所周知的RSA公钥系统的改进。我们描述了数字理论基础,介绍了系统所需的算法以及它们的计算复杂性,分析了方案的安全性,最后讨论了一种实现。所有用于密钥交换的常规协议都强烈依赖于组的结构。最近,首次提出了对标准协议的修改建议,该修改不使用组,而是基于实际二次场的基础结构。与先前已知协议相比,基础集中结构的这种丢失可能会增加方案的安全性。本文的第二部分介绍了新协议的细节。和以前一样,我们给出必要的数论背景,描述算法及其复杂性,给出完整的近似和误差分析,简要讨论安全性,并得出一些计算结果。

著录项

  • 作者

    Scheidler, Renate.;

  • 作者单位

    University of Manitoba (Canada).;

  • 授予单位 University of Manitoba (Canada).;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 1993
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号