首页> 外文学位 >Mathematical modeling of cryogenic food freezing.
【24h】

Mathematical modeling of cryogenic food freezing.

机译:低温食品冷冻的数学模型。

获取原文
获取原文并翻译 | 示例

摘要

Liquid nitrogen (LN;First, freeze-cracking susceptibility of foods during cryogenic freezing was evaluated. Results demonstrated that fruits and vegetables, meat and dairy products were generally more susceptible to freeze-cracking than bakery products. Several properties including moisture content, density, porosity, modulus of elasticity (E), Poisson's ratio (;The second manuscript describes the design and construction of an environmental chamber. The chamber can be attached to an Instron Universal Testing Machine for determination of E, ;Transient heat transfer analysis was then conducted using finite element method (FEM) for a 2-dimensional axisymmetric domain of Tylose gel during cryogenic freezing. Predicted temperature distribution was close to experimental result except the predicted surface temperature decreased slower than experimental value. This may be due to surface cracking during cryogenic freezing as confirmed by visual observations.;In the fourth manuscript, nonlinear static analysis with FEM was conducted on the same domain as in the heat transfer. Calculated stresses showed initial development at the sample surface and gradually moved toward the center. Local stresses were developed at the freezing boundary. Displacement results were verified by overall strain of the cylinder using an approximated value of thermal expansion coefficient. Based on the model developed in this study, internal stress during freezing can be predicted. Freezing rate can then be adjusted to the level not allowing the internal stress exceeding the material strength.;A freeze-cracking mechanism was postulated based on the information collected from the heat transfer, stress and displacement analyses. Internal stress development was caused by volume expansion during water-ice phase transition and temperature-dependent mechanical properties.
机译:液氮(LN);首先,评估了食品在低温冷冻过程中的冷冻开裂敏感性。结果表明,水果和蔬菜,肉类和奶制品通常比烘焙产品更容易产生冷冻开裂。水分,密度,孔隙率,弹性模量(E),泊松比(;第二稿描述了环境室的设计和构造。该室可以连接到Instron万能试验机上测定E,然后进行瞬态传热分析用有限元方法对Tylose凝胶的二维轴对称域进行了低温冷冻,预测的温度分布与实验结果接近,只是预测的表面温度下降得比实验值慢,这可能是由于低温冷冻过程中的表面开裂目视所证实。;在第四手稿中,非线性有限元静态分析是在与传热相同的领域进行的。计算得出的应力在样品表面开始发展,并逐渐向中心移动。在冻结边界处产生了局部应力。使用近似的热膨胀系数值通过气缸的总应变来验证位移结果。基于本研究开发的模型,可以预测冻结过程中的内部应力。然后可以将冻结速率调整到不允许内部应力超过材料强度的水平。基于从传热,应力和位移分析中收集的信息,提出了一种冻结裂纹机制。内部应力的产生是由水冰相变过程中的体积膨胀和温度相关的机械性能引起的。

著录项

  • 作者

    Kim, Nak-Kyung.;

  • 作者单位

    University of Georgia.;

  • 授予单位 University of Georgia.;
  • 学科 Agriculture Food Science and Technology.;Mathematics.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1993
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号