首页> 外文学位 >Analysis of chemical vapor deposition: Modeling of growth morphology and deposition enhancement.
【24h】

Analysis of chemical vapor deposition: Modeling of growth morphology and deposition enhancement.

机译:化学气相沉积分析:生长形态和沉积增强模型。

获取原文
获取原文并翻译 | 示例

摘要

Two aspects of chemical vapor deposition (CVD) are addressed. Both are aimed at improving existing CVD technology, by either improving film quality or by increasing the traditionally slow deposition rate. The goal was to gain a better understanding of underlying phenomena in these two areas of CVD by analyzing them theoretically. It is hoped that the theoretical models developed for this purpose will allow prediction of film properties and reactor performance, which can be used in the design and optimization of future CVD reactors. The first aspect of CVD addressed is interface evolution and the morphology of amorphous CVD films grown under high pressure (close to atmospheric) deposition. A continuum model of deposition on the microscopic scale is developed, and a detailed analysis of the influence of deposition conditions on film uniformity is presented. A linear stability analysis is presented, but the real focus is on solution of the governing equations under nonplanar growth conditions. A numerical solution procedure is developed, which allows us to follow the evolution of highly irregular morphological shapes during different CVD conditions, and from almost any initial interface shape. The process can be characterized by a Damkohler number of deposition, Da, and simulation results showed phenomena very similar to those observed experimentally. Film uniformity and step coverage decreases with increasing values of Da. We believe the solution procedure can be used for tracking interface evolution in a wide variety of Stefan-like free-boundary problems, especially those with highly irregular interface shapes.; The second part deals with an innovative CVD method, we call particle-aided chemical vapor deposition (PACVD). Application of this method was shown to increase the CVD growth rate tremendously, by seeding the gas feed with aerosol particles of a solid material. PACVD was successfully used to produce composites of SiC with {dollar}TiBsb2{dollar}, {dollar}Sisb3Nsb4{dollar} and {dollar}Bsb4C{dollar}. A theoretical analysis of PACVD is presented, where complex gas and aerosol flow phenomena in the highly non-isothermal reactor are accounted for, as well as simultaneous particle and chemical co-deposition onto the substrate. Numerical results predicted phenomena similar to those observed experimentally, and were used to determine modifications to improve uniformity of deposition.
机译:解决了化学气相沉积(CVD)的两个方面。两者都旨在通过改善薄膜质量或通过增加传统上较慢的沉积速率来改善现有的CVD技术。目的是通过理论上分析这两个方面来更好地了解CVD中这两个方面的潜在现象。希望为此目的开发的理论模型能够预测膜的性质和反应器性能,这些可用于未来CVD反应器的设计和优化。 CVD的第一个方面是界面演变和在高压(接近大气压)沉积下生长的非晶CVD膜的形态。建立了微观尺度上的连续沉积模型,并详细分析了沉积条件对薄膜均匀性的影响。提出了线性稳定性分析,但真正的重点是在非平面生长条件下控制方程的解。开发了一种数值求解程序,它使我们能够追踪在几乎不同的初始界面形状下,不同CVD条件下高度不规则形态的演变。该过程可以用沉积的Dakohler数Da来表征,并且模拟结果显示出与实验观察到的现象非常相似的现象。膜的均匀性和台阶覆盖率随Da值​​的增加而降低。我们认为,该解决方法可用于跟踪各种类似于Stefan的自由边界问题中的界面演化,尤其是那些具有高度不规则界面形状的问题。第二部分介绍了一种创新的CVD方法,我们称之为粒子辅助化学气相沉积(PACVD)。通过使用固体材料的气溶胶颗粒给气体进料,可以证明该方法的应用极大地提高了CVD的生长速度。 PACVD已成功用于生产{美元} TiBsb2 {美元},{美元} Sisb3Nsb4 {美元}和{美元} Bsb4C {美元}的SiC复合材料。提出了PACVD的理论分析,其中考虑了高度非等温反应器中的复杂气体和气溶胶流动现象,以及同时在基材上进行颗粒和化学共沉积。数值结果预测了与实验观察到的现象相似的现象,并用于确定改进沉积均匀性的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号