首页> 外文学位 >Formulation and analysis of inertial navigation equations for terrestrial navigation systems.
【24h】

Formulation and analysis of inertial navigation equations for terrestrial navigation systems.

机译:地面导航系统惯性导航方程的制定和分析。

获取原文
获取原文并翻译 | 示例

摘要

The primary objective of this thesis work is to develop and apply a practical means of precisely determining the position of fixed guideway systems (moving rail and rubber-tire vehicles) by sensing and interpreting the various motions of these vehicles with respect to an inertial reference frame. For strapdown navigation systems, the inertial navigation equations (also called the navigator) play the role of interpreting the input signals from accelerometer and gyro sensors to predict the velocity and position of these vehicles.; This work focused on existing navigators and the development of new navigators to match the goal of low cost IMU instruments. In total, six navigators were derived. Specifically, they are the earth-centered frame, local-level frame, reduced earth-centered frame, earth-surface frame, tangent and normal frame, and speed tangent and normal frame navigators. For each of these navigators, the following issues were also investigated: the error model for each navigator, navigator performance, determination and sensitivity of initial conditions, the error effect of the Earth's angular rate, and numerical integration methods for attitude calculation.; From the study of arithmetic operations, we have shown that a nine-parameter scheme is less effective than a three-parameter (Euler angles) scheme. The computational load for the (reduced) earth-centered frame navigator is slightly less than the local-level frame navigator. Also, the speed tangent normal frame navigator is the best navigator among these navigators in terms of the number of arithmetic operations.; The numerical integration methods provided by SIMULINK (from Math Work Inc.) show that a fifth order Runge-Kutta-Fehlberg method is the best among several numerical integration methods (including a third order Runge-Kutta-Fehlberg, the Adams, and the Gear methods). We have also shown that the time step size of 1/75 second is appropriate for terrestrial navigation systems.; A coarse alignment procedure is introduced in this thesis, and the sensitivity of initialization is analyzed. Through the sensitivity of initialization study, a bounded attitude error formula is presented.; The error propagation for the Earth's angular rate is also studied. The study has identified a position error range in terms of velocity, the Earth's angular rate, and the navigation time when modeling ignores the Earth's angular rate. This study provides the information needed for using high-grade sensors in a navigator which does not model the Earth's angular rate.; The study of stability and performance for each navigator shows that most of the navigators exhibit unstable behavior, except the local-level frame navigator. For the navigators which model the Earth's angular rate, they still show the Schuler effect in the error states. We have also compared the position errors produced from each navigator under the same error sources. From this investigation, we found that the speed tangent and normal frame navigator is the best candidate for terrestrial navigation systems. The tangent and normal frame navigator and the earth-surface frame navigator are the next best candidates. However, if high-grade sensors which measure the Earth's angular rate are used, then the earth-centered frame and/or the local-level frame navigator are the best navigators to be used.
机译:本文工作的主要目的是开发和应用一种实用的方法,通过感测和解释这些车辆相对于惯性参考系的各种运动来精确确定固定导轨系统(移动的铁路和橡胶轮胎车辆)的位置。对于捷联导航系统,惯性导航方程式(也称为导航器)起着解释来自加速度计和陀螺仪传感器的输入信号的作用,以预测这些车辆的速度和位置。这项工作集中于现有的导航仪和新导航仪的开发,以符合低成本IMU仪器的目标。总共导出了六个导航器。具体来说,它们是以地球为中心的框架,局部水平框架,缩小的以地球为中心的框架,地表框架,切线和法线框架以及速度切线和法线框架导航器。对于每个导航器,还研究了以下问题:每个导航器的误差模型,导航器性能,初始条件的确定和灵敏度,地球角速度的误差影响以及用于姿态计算的数值积分方法。从算术运算的研究中,我们表明九参数方案的有效性不如三参数(欧拉角)方案。 (减少的)以地球为中心的框架导航器的计算负荷略小于本地级别的框架导航器。同样,就算术运算次数而言,速度切线法线框导航器是这些导航器中最好的导航器。 SIMULINK(来自Math Work Inc.)提供的数值积分方法表明,五阶Runge-Kutta-Fehlberg方法是几种数值积分方法(包括三阶Runge-Kutta-Fehlberg,Adams和Gear)中最好的方法。方法)。我们还表明,1/75秒的时间步长适用于地面导航系统。本文介绍了一种粗对准方法,并分析了初始化的敏感性。通过初始化研究的敏感性,提出了有界姿态误差公式。还研究了地球角速度的误差传播。该研究已经确定了在建模时忽略地球角速度的速度,地球角速度和导航时间方面的位置误差范围。这项研究提供了在不模拟地球角速度的导航器中使用高级传感器所需的信息。对每个导航器的稳定性和性能的研究表明,除了本地级别的框架导航器之外,大多数导航器都表现出不稳定的行为。对于模拟地球角速度的导航器,它们仍然在错误状态下显示舒勒效应。我们还比较了在相同误差源下每个导航器产生的位置误差。通过这项调查,我们发现速度切线和法线框导航器是地面导航系统的最佳选择。切线和法线框架导航器和地表框架导航器是次之。但是,如果使用可测量地球角速度的高级传感器,则以地球为中心的框架和/或本地级别的框架导航器是最佳的导航器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号