首页> 外文学位 >Water wave-seabed interactions and mass transport.
【24h】

Water wave-seabed interactions and mass transport.

机译:水浪-海底相互作用和物质运输。

获取原文
获取原文并翻译 | 示例

摘要

The water wave-seabed interactions are studied for small amplitude waves propagating in a water-soft-mud system. Based on systematic experiments, the seabed is divided into different layers with different rheology properties. The thickness of each layer is a part of the solutions to the interaction problem. The nonlinear viscous and elastic stresses due to strain-dependent viscosity and shear modulus are linearized by Lorentz's condition of equivalent work. The solutions of motions in the system are sought in terms of the surface wave slope, {dollar}alpha{dollar}, which is a small parameter. The viscous damping effect of the motions is assumed to be of the same order of magnitude as {dollar}alpha{dollar}. The surface water wave decays spatially in the direction of wave propagation. The solutions of the periodic leading-order wave motions, {dollar}O(alpha{dollar}), in the system are presented. The second-order solutions for both periodic wave motions and steady streaming are also obtained. It is found that surface water wave motion and steady streaming are enhanced by seabed movements. The fluidized depths of seabed increase with {dollar}alpha{dollar} and decrease with seabed density. The viscous dissipation in the system also increases because of the seabed fluidization. The analytical results are verified by experimental data for simple cases.; Alternatively, water waves may decay temporally due to viscosity. To {dollar}O(alpha{dollar}), solutions of motions of a temporally decaying wave are in the same form as that of a spatially decaying wave, except for a different decaying factor. However, the second-order motions of a temporally decaying wave may be much different from that of a spatially decaying wave. The mass transport of waves decaying temporally in a two-layer fluid system is investigated with analytical and numerical approaches. The mean motions are treated as an initial-boundary-value problem. Because of viscous damping and diffusion, strong transient interfacial second boundary layers of {dollar}O(epsilonsp{lcub}1/2{rcub}{dollar}), where {dollar}epsilon{dollar} is the dimensionless Stokes boundary layer thickness, are established adjacent to the interfaces, in contrast to the parabolic profiles of a spatially decaying wave. Within the second boundary layers, there may exist the steady streaming of {dollar}O(alphasp2epsilonsp{lcub}-1/2{rcub}){dollar}.
机译:研究了在软泥系统中传播的小振幅波的水波-海床相互作用。根据系统实验,将海床分为具有不同流变特性的不同层。每层的厚度是解决相互作用问题的一部分。洛伦兹的等效功条件使应变相关的粘度和剪切模量引起的非线性粘性和弹性应力线性化。根据表面波斜率{dollar} alpha {dollar}来寻找系统中的运动解,这是一个小参数。假设运动的粘性阻尼效果与{alpha} alpha {dollar}具有相同的数量级。地表水波在波传播方向上在空间上衰减。给出了系统中周期前导波运动的解{dollar} O(alpha {dollar})。同时获得了周期性波动和稳定流的二阶解。发现海床运动增强了地表水波运动和稳定的水流。海底的流化深度随{alpha} alpha {dollar}的增加而增加,随海底密度的增加而减小。由于海床流态化,系统中的粘性耗散也增加了。对于简单的情况,分析结果由实验数据验证。或者,水波可能会由于粘性而暂时衰减。对于O(α{dollar}),时间衰减波的运动解与空间衰减波的解形式相同,只是衰减因子不同。但是,时间衰减波的二次运动可能与空间衰减波的二次运动大不相同。用解析和数值方法研究了在两层流体系统中暂时衰减的波的质量传输。平均运动被视为初始边界值问题。由于粘性阻尼和扩散,{dol} O(epsilonsp {lcub} 1/2 {rcub} {dollar})的强瞬态界面第二边界层,其中{dollar} epsilon {dollar}是无量纲的斯托克斯边界层厚度,与空间衰减波的抛物线轮廓相反,在界面附近建立了“α”。在第二边界层内,可能存在{美元} O(alphasp2epsilonsp {lcub} -1/2 {rcub}){美元}的稳定流。

著录项

  • 作者

    Wen, Jiangang.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Engineering Civil.; Physical Oceanography.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;海洋物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号