首页> 外文学位 >Numerical solutions to dynamic fracture problems using the element-free Galerkin method.
【24h】

Numerical solutions to dynamic fracture problems using the element-free Galerkin method.

机译:使用无单元Galerkin方法的动态断裂问题的数值解。

获取原文
获取原文并翻译 | 示例

摘要

Application of the element-free Galerkin method to dynamic fracture problems is described. This meshless method facilitates the modeling of arbitrary crack growth because it does not require remeshing; crack propagation is modeled by extending the crack surfaces. The essential feature of the method is the use of moving least square approximations, where the dependent variable is obtained at any point by minimizing a weighted discrete error norm involving the nodal variables within a small domain surrounding the point. The governing equations are solved by a Galerkin method.; A procedure is developed for coupling meshless methods and finite element methods, allowing the use of efficient finite elements in regions without cracks, while a meshless method is used in crack growth regions. The coupling is constructed using interface elements in which continuity and consistency are preserved. Results are presented for both elastostatic and elastodynamic problems.; Continuous meshless approximations near nonconvex boundaries, such as crack tips, are constructed by the diffraction method. Approximations by the diffraction method are compared to the visibility criterion in which the approximations are discontinuous in the vicinity of nonconvex boundaries. The continuous approximations show moderate improvement in accuracy over the discontinuous approximations when a linear basis is used, but yield significant improvements for enhanced bases.; Fracture modeling is described for meshless methods. The accurate computation of fracture parameters, the propagation criterion, and modeling arbitrary crack growth are presented.; A series of dynamic fracture examples illustrates the performance of the techniques developed, ranging from a stationary crack under impact loading to multiple cracks growing in arbitrary directions at arbitrary speeds. The EFG solutions compare well with analytical solutions and experimental results for stationary cracks and arbitrary crack growth at constant as well as variable crack velocities.
机译:描述了无元素Galerkin方法在动态断裂问题中的应用。由于不需要重新网格划分,因此这种无网格方法有助于对任意裂纹扩展进行建模。通过扩展裂纹表面来模拟裂纹扩展。该方法的基本特征是使用移动最小二乘逼近,其中因变量是通过最小化加权离散离散误差范数来获得的,该加权离散离散范数是该点周围小域内节点变量的最小值。控制方程通过Galerkin方法求解。开发了一种将无网格方法和有限元方法相结合的程序,允许在没有裂纹的区域中使用有效的有限元,而在裂纹扩展区域中使用无网格方法。使用保留了连续性和一致性的接口元素构造耦合。给出了弹性静力学和弹性力学问题的结果。通过衍射方法构造了非凸边界(如裂纹尖端)附近的连续无网格近似。将通过衍射法得出的近似值与可见性标准进行比较,在该可见性标准中,近似值在非凸边界附近不连续。当使用线性基准时,连续近似在精度上比不连续近似有适度的提高,但是对于增强的基准产生了显着的提高。描述了无网格方法的断裂建模。给出了断裂参数的精确计算,传播准则以及任意裂纹扩展的建模。一系列动态断裂示例说明了所开发技术的性能,范围从冲击载荷下的固定裂纹到以任意速度沿任意方向生长的多个裂纹。 EFG解决方案与固定和可变裂纹速度下的固定裂纹和任意裂纹扩展的分析解决方案和实验结果很好地比较。

著录项

  • 作者

    Organ, Daniel Jude.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Applied Mechanics.; Engineering Mechanical.; Engineering Civil.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;机械、仪表工业;建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号