首页> 外文学位 >Modeling and optimal design of nanoscale double-gate CMOS devices and technology.
【24h】

Modeling and optimal design of nanoscale double-gate CMOS devices and technology.

机译:纳米级双栅CMOS器件和技术的建模和优化设计。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation seeks to model underlying physical effects, and gain insights into the optimal design of nanoscale Double-Gate (DG) MOSFETs, particularly the quasi-planar FinFET structure. Our work includes design of a novel FinFET-based device structure (scalable ITFET), evaluation of the suitability of high-k gate dielectrics for nanoscale FinFETs, a model for parasitic fringe capacitance in DG FinFETs, and insights on optimal source/drain (S/D) process design and carrier mobility in short-channel FinFETs.;The ITFET is a recently proposed hybrid device which consists of a FinFET and planar FD/SOI MOSFET combined into a single device with a common gate. The advantage of the ITFET is that it enhances the on-state current per pitch by ∼100%; its disadvantage is poor scalability. We propose a novel ITFET design which is scalable to near the end of the ITRS roadmap while still giving reasonable enhancement in on-state current, Ion (∼20-35%).;We perform a realistic assessment of the performance and scalability advantage of high-k dielectrics in FinFET-CMOS technology. Our results indicate that a high-k dielectric actually undermines circuit performance while giving limited improvement in scalability. We conclude that high-k gate dielectrics are not suitable for nanoscale FinFETs.;We present a physical model for fringe capacitance (Cf) in DG MOSFETs with non-abrupt S/D junctions. We model Cf in terms of the device structure and short-channel effects (SCEs). The model is implemented in our physical/process based compact model, UFDG, and will enable quasi-predictive device/circuit simulations.;In undoped UTB FinFETs, the lateral S/D doping profile, NSD(y), defines the tradeoff between SCEs and parasitic resistance, RS/D, via gate-source/drain underlap. We demonstrate a reverse-engineering methodology to extract NSD(y) from FinFET CG-V GS and IDS-VGS data. The extracted NSD(y) is then used to redesign the S/D process to effect a better tradeoff between SCEs and RS/D.;Finally, we discuss the degradation of mobility in short-channel FinFETs possibly due to S/D defects/dopants. We explore possible causes of the phenomenon and make device processing suggestions to help mitigate the effect.
机译:本文旨在对潜在的物理效应进行建模,并深入了解纳米级双栅极(DG)MOSFET的最佳设计,尤其是准平面FinFET结构。我们的工作包括基于FinFET的新型器件结构的设计(可扩展ITFET),纳米级FinFET的高k栅极电介质的适用性评估,DG FinFET中的寄生边缘电容模型以及对最佳源极/漏极(S / D)工艺设计和短沟道FinFET中的载流子迁移率; ITFET是最近提出的混合器件,它由FinFET和平面FD / SOI MOSFET组成,并与具有公共栅极的单个器件结合在一起。 ITFET的优势在于,它使每个节距的导通状态电流提高了约100%。它的缺点是可伸缩性差。我们提出了一种新颖的ITFET设计,该设计可扩展至ITRS路线图的末尾,同时仍可合理地提高通态电流离子(约20-35%)。 FinFET-CMOS技术中的高k电介质。我们的结果表明,高k电介质实际上会破坏电路性能,同时在可扩展性方面的改进有限。我们得出的结论是,高k栅极电介质不适用于纳米级FinFET。;我们提出了具有非突变S / D结的DG MOSFET的边缘电容(Cf)的物理模型。我们根据设备结构和短通道效应(SCE)建模Cf。该模型在我们基于物理/过程的紧凑型模型UFDG中实现,并将实现准预测的器件/电路仿真。;在未掺杂的UTB FinFET中,横向S / D掺杂轮廓NSD(y)定义了SCE之间的权衡通过栅极-源极/漏极重叠部分产生的寄生电阻RS / D。我们演示了一种逆向工程方法,可从FinFET CG-V GS和IDS-VGS数据中提取NSD(y)。然后,将提取的NSD(y)用于重新设计S / D过程,以在SCE和RS / D之间实现更好的折衷。最后,我们讨论了可能由于S / D缺陷/掺杂剂。我们探究了这种现象的可能原因,并提出了设备处理建议以帮助减轻这种影响。

著录项

  • 作者

    Agrawal, Shishir.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号