首页> 外文学位 >High-performance thin-film transistors fabricated using excimer laser processing.
【24h】

High-performance thin-film transistors fabricated using excimer laser processing.

机译:使用准分子激光加工制造的高性能薄膜晶体管。

获取原文
获取原文并翻译 | 示例

摘要

Future cost-effective manufacturing of large-area active-matrix liquid-crystal displays will require high-performance polysilicon thin-film transistors (TFT's) for driving and switching pixels. A further requirement is that these devices be fabricated on inexpensive glass substrates that limit processing temperatures to below 600{dollar}spcirc{dollar}C. The two major barriers to fabricating these TFT's are, low temperature processes for (i) producing low-defect-density polysilicon films for the active areas, and (ii) incorporating and activating dopants for source-drain junctions. The goal of this work is to develop excimer-laser-based processes that overcome these barriers and push the performance limits for polysilicon TFT's.; The first barrier is overcome by "grain engineering" high-quality polysilicon films. One grain engineering approach is to optimize the laser processing parameters, such as laser fluence, pulse frequency, and number of pulses. A detailed study of the laser recrystallized grain microstructure as a function of these laser parameters is presented. By understanding the laser process, an average grain size of {dollar}sim{dollar}4{dollar}mu{dollar}m is achieved in 90 nm thick polysilicon films, in which the largest grains are more than 9 {dollar}mu{dollar}m long. A second approach is to manipulate the sample structure before laser recrystallization. For example, prepatterning the polysilicon film into active areas before recrystallization results in large lateral grain growth along the edge of the patterned island after recrystallization. A novel "recessed" structure is also introduced, and provides similar results. The second barrier mentioned above is overcome by applying gas-immersion laser doping (GILD) to heavily dope polysilicon films. Using GILD, only twenty laser pulses are needed to dope a 90 nm thick polysilicon film below 1000 {dollar}Omega{dollar}/sq.; By combining the grain-engineered channel polysilicon regions with the laser-doped source-drain regions, high-performance TFT's are fabricated with electron mobilities up to 260 cm{dollar}sp2{dollar}/Vs and on/off current ratios greater than 10{dollar}sp7{dollar}. These devices represent the best performing laser-annealed TFT's reported without using substrate heating or hydrogenation.; In developing the materials used in these TFT's, we discovered a new ripple-formation mechanism observed after laser irradiation of polysilicon films sandwiched between oxide layers. The ripples appear chaotic, with a periodicity of 1 {dollar}mu{dollar}m. The characteristics of these ripples are investigated in the context of trying to identify the underlying physical phenomena.
机译:未来大面积有源矩阵液晶显示器的具有成本效益的制造将需要高性能的多晶硅薄膜晶体管(TFT)来驱动和切换像素。进一步的要求是,这些器件必须在廉价的玻璃基板上制造,从而将处理温度限制在600℃以下。制造这些TFT的两个主要障碍是:(i)为有源区生产低缺陷密度多晶硅膜的低温工艺,以及(ii)为源极-漏极结引入和激活掺杂剂。这项工作的目标是开发基于准分子激光的工艺,以克服这些障碍并突破多晶硅TFT的性能极限。通过“晶粒工程”高质量的多晶硅膜可以克服第一个障碍。一种粮食工程方法是优化激光加工参数,例如激光能量密度,脉冲频率和脉冲数。提出了根据这些激光参数对激光再结晶晶粒微观结构进行的详细研究。通过了解激光工艺,可以在90 nm厚的多晶硅膜中获得{sim} {{dollar} 4 {dollar} mu {dollar} m的平均晶粒尺寸,其中最大晶粒大于9 {dollar} mu {美元}米长。第二种方法是在激光重结晶之前处理样品结构。例如,在重结晶之前将多晶硅膜预构图到有源区域中会导致重结晶之后沿着构图的岛的边缘有较大的横向晶粒生长。还介绍了一种新颖的“凹陷”结构,并提供了相似的结果。通过将气体浸没激光掺杂(GILD)应用于重掺杂多晶硅薄膜,可以克服上述第二个障碍。使用GILD,只需掺杂二十个激光脉冲即可掺杂厚度低于1000dolΩ/ sq的90 nm厚的多晶硅膜;通过将晶粒工程化的沟道多晶硅区域与激光掺杂的源极-漏极区域相结合,可以制造出电子迁移率高达260 cm {dol} sp2 {dol} / Vs且开/关电流比大于10的高性能TFT。 {dollar} sp7 {dollar}。这些器件代表了在不使用基板加热或氢化的情况下,性能最佳的激光退火TFT。在开发用于这些TFT的材料时,我们发现了在激光辐照夹在氧化层之间的多晶硅膜后观察到的新的波纹形成机理。涟漪看起来很混乱,其周期性为1 {dollar} mu {dollar} m。在试图识别潜在的物理现象的背景下研究了这些纹波的特征。

著录项

  • 作者

    Giust, Gary Kenneth.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号