首页> 外文学位 >A neurocomputing approach to solving partial differential equations.
【24h】

A neurocomputing approach to solving partial differential equations.

机译:一种求解偏微分方程的神经计算方法。

获取原文
获取原文并翻译 | 示例

摘要

Differential equations in science and engineering are tools to describe the actual behavior of physical systems. Physical situations involving more than one variable can often be expressed using equations involving partial derivatives (PDEs). While there already exists many analytical and numerical techniques for solving PDEs, recent advances in an alternative problem solving approach, artificial neural networks, suggest that this methodology may have potential in this area. Neural nets are of interest to researchers in many areas of science. They are a powerful tool for modeling problems for which explicit solutions are not known or can not be easily obtained. Since PDEs can lead to challenging numerical problems, it is advantageous to develop methods for applying neural nets to solving partial differential equations.;This dissertation introduces a new approach to approximate solutions of differential equations using the recently developed Hopfield neural networks. The Hopfield neural network is designed to solve constrained optimization problems; it is a recurrent net where the weights are fixed to represent the constraints and the quantity to be optimized. Our approach consists of two new techniques developed to solve both boundary value problem (BVP) and PDE, by combining the two standard numerical methods, finite-differences and finite-elements, with the Hopfield neural net. The new approaches are denoted the Hopfield-finite-difference (HFD) and Hopfield-finite-element (HFE) methods.;The use of the HFD and HFE methods are illustrated for several simple problems. Sensitivity tests on the parameters involved in these methods demonstrate the robustness of these methods. Moreover, several forms of the Hopfield neural net are explored, namely, parallel computation, sequential mode, and random order of updates. The stability characteristics of the Hopfield nets developed in the research are summarized. The developed methods are then used to approximate the solutions of a variety of problems, and the results are compared with those obtained by numerical methods.;Many examples of basic PDEs and BVPs are successfully solved using the proposed approaches, demonstrating the effectiveness of these methods. The problems discussed in the research are a brief sample of the applications in which HFD and HFE can be used; they suggest the breadth of the neural net's applicability in approximating solutions to partial differential equations.
机译:科学和工程中的微分方程是描述物理系统实际行为的工具。涉及多个变量的物理情况通常可以使用涉及偏导数(PDE)的方程式表示。尽管已经存在许多解决PDE的分析和数值技术,但替代性问题解决方法(人工神经网络)的最新进展表明,这种方法在该领域可能具有潜力。神经网络吸引了许多科学领域的研究人员。它们是用于建模尚不清楚或难以获得明确解决方案的问题的强大工具。由于偏微分方程会导致数值难题,因此发展将神经网络应用于偏微分方程的方法是有利的。本论文介绍了一种利用最近开发的Hopfield神经网络近似求解微分方程的新方法。 Hopfield神经网络旨在解决约束优化问题。它是一个递归网络,其中权重固定以表示约束和要优化的数量。我们的方法由两种新技术组成,这些技术通过将两种标准数值方法(有限差分和有限元素)与Hopfield神经网络相结合来解决边界值问题(BVP)和PDE。这些新方法分别表示为Hopfield有限差分(HFD)和Hopfield有限元素(HFE)方法。阐述了HFD和HFE方法在几个简单问题上的用法。对这些方法所涉及参数的敏感性测试证明了这些方法的鲁棒性。此外,还探讨了Hopfield神经网络的几种形式,即并行计算,顺序模式和更新的随机顺序。总结了研究中开发的Hopfield网络的稳定性特征。然后将开发的方法用于近似解决各种问题,并将结果与​​通过数值方法获得的结果进行比较。;使用所提出的方法成功解决了许多基本PDE和BVP的实例,证明了这些方法的有效性。研究中讨论的问题是可以使用HFD和HFE的应用的简要示例;他们提出了神经网络适用于偏微分方程近似解的广度。

著录项

  • 作者

    Alharbi, Abir H.;

  • 作者单位

    Florida Institute of Technology.;

  • 授予单位 Florida Institute of Technology.;
  • 学科 Mathematics.;Artificial intelligence.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 农学(农艺学);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号