首页> 外文学位 >Neural networks for learning and prediction with applications to remote sensing and speech perception.
【24h】

Neural networks for learning and prediction with applications to remote sensing and speech perception.

机译:用于学习和预测的神经网络,并应用于遥感和语音感知。

获取原文
获取原文并翻译 | 示例

摘要

Neural networks for supervised and unsupervised learning are developed and applied to problems in remote sensing, continuous map learning, and speech perception. Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART networks synthesize fuzzy logic and neural networks, and supervised ARTMAP networks incorporate ART modules for prediction and classification. New ART and ARTMAP methods resulting from analyses of data structure, parameter specification, and category selection are developed. Architectural modifications providing flexibility for a variety of applications are also introduced and explored.; A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on fuzzy ARTMAP, is developed. System capabilities are tested on a challenging remote sensing problem, prediction of vegetation classes in the Cleveland National Forest from spectral and terrain features. After training at the pixel level, performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, back propagation neural networks, and K-nearest neighbor algorithms. Best performance is obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. This work forms the foundation for additional studies exploring fuzzy ARTMAP's capability to estimate class mixture composition for non-homogeneous sites.; Exploratory simulations apply ARTMAP to the problem of learning continuous multidimensional mappings. A novel system architecture retains basic ARTMAP properties of incremental and fast learning in an on-line setting while adding components to solve this class of problems.; The perceptual magnet effect is a language-specific phenomenon arising early in infant speech development that is characterized by a warping of speech sound perception. An unsupervised neural network model is proposed that embodies two principal hypotheses supported by experimental data--that sensory experience guides language-specific development of an auditory neural map and that a population vector can predict psychological phenomena based on map cell activities. Model simulations show how a nonuniform distribution of map cell firing preferences can develop from language-specific input and give rise to the magnet effect.
机译:开发了用于有监督和无监督学习的神经网络,并将其应用于遥感,连续地图学习和语音感知中的问题。自适应共振理论(ART)模型是用于类别学习,模式识别和预测的实时神经网络。无监督的模糊ART网络综合了模糊逻辑和神经网络,而有监督的ARTMAP网络则结合了用于预测和分类的ART模块。通过分析数据结构,参数指定和类别选择,开发了新的ART和ARTMAP方法。还介绍并探讨了为各种应用程序提供灵活性的体系结构修改。开发了一种基于模糊ARTMAP的Landsat Thematic Mapper(TM)和地形数据自动映射的新方法。系统功能已通过一个具有挑战性的遥感问题进行了测试,并根据光谱和地形特征预测了克利夫兰国家森林的植被类别。在像素级别进行训练后,将使用在训练期间未看到的位置在展台级别测试性能。将结果与最大似然分类器,反向传播神经网络和K近邻算法进行比较。使用基于模糊ARTMAP和最大似然预测的凸组合的混合系统可获得最佳性能。这项工作为进一步研究模糊ARTMAP估计非均质场所类混合物组成的能力奠定了基础。探索性模拟将ARTMAP应用于学习连续多维映射的问题。一种新颖的系统架构在在线设置中保留了增量学习和快速学习的基本ARTMAP属性,同时添加了解决此类问题的组件。感知磁效应是婴儿语音发展早期出现的一种特定于语言的现象,其特征在于语音感知的扭曲。提出了一种无监督的神经网络模型,该模型体现了实验数据支持的两个主要假设-感觉经验指导听觉神经图的语言特定发展,并且种群矢量可以根据图细胞的活动预测心理现象。模型仿真显示了如何从特定于语言的输入中发展出地图单元格射击偏好的不均匀分布,并引起磁效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号