首页> 外文学位 >Trust-Based Control of (Semi)Autonomous Mobile Robotic Systems.
【24h】

Trust-Based Control of (Semi)Autonomous Mobile Robotic Systems.

机译:(半)自主移动机器人系统的基于信任的控制。

获取原文
获取原文并翻译 | 示例

摘要

Despite great achievements made in (semi)autonomous robotic systems, human participation is still an essential part, especially for decision-making about the autonomy allocation of robots in complex and uncertain environments. However, human decisions may not be optimal due to limited cognitive capacities and subjective human factors. In human-robot interaction (HRI), trust is a major factor that determines humans' use of autonomy. Over/under trust may lead to disproportionate autonomy allocation, resulting in decreased task performance and/or increased human workload. In this work, we develop automated decision-making aids utilizing computational trust models to help human operators achieve a more effective and unbiased allocation. Our proposed decision aids resemble the way that humans make an autonomy allocation decision, however, are unbiased and aim to reduce human workload, improve the overall performance, and result in higher acceptance by a human.;We consider two types of autonomy control schemes for (semi)autonomous mobile robotic systems. The first type is a two-level control scheme which includes switches between either manual or autonomous control modes. For this type, we propose automated decision aids via a computational trust and self-confidence model. We provide analytical tools to investigate the steady-state effects of the proposed autonomy allocation scheme on robot performance and human workload. We also develop an autonomous decision pattern correction algorithm using a nonlinear model predictive control to help the human gradually adapt to a better allocation pattern. The second type is a mixed-initiative bilateral teleoperation control scheme which requires mixing of autonomous and manual control. For this type, we utilize computational two-way trust models. Here, mixed-initiative is enabled by scaling the manual and autonomous control inputs with a function of computational human-to-robot trust. The haptic force feedback cue sent by the robot is dynamically scaled with a function of computational robot-to-human trust to reduce human's physical workload.;Using the proposed control schemes, our human-in-the-loop tests show that the trust-based automated decision aids generally improve the overall robot performance and reduce the operator workload compared to a manual allocation scheme. The proposed decision aids are also generally preferred and trusted by the participants. Finally, the trust-based control schemes are extended to the single-operator-multi-robot applications. A theoretical control framework is developed for these applications and the stability and convergence issues under the switching scheme between different robots are addressed via passivity based measures.
机译:尽管在(半)自动机器人系统中取得了巨大的成就,但是人类的参与仍然是必不可少的部分,特别是对于在复杂且不确定的环境中进行机器人的自主分配的决策。但是,由于有限的认知能力和主观的人为因素,人的决定可能不是最佳的。在人机交互(HRI)中,信任是决定人类对自主权使用的主要因素。过度信任/信任不足可能导致自治分配不成比例,从而导致任务性能下降和/或人员工作量增加。在这项工作中,我们利用计算信任模型开发自动决策辅助工具,以帮助操作员实现更有效和公正的分配。我们提出的决策辅助方法类似于人类做出自主权分配决策的方式,但是这种方法没有偏见,旨在减少人类的工作量,改善整体绩效并提高人类的接受度。;我们考虑了两种类型的自主权控制方案(半)自主移动机器人系统。第一种是两级控制方案,包括手动或自主控制模式之间的切换。对于这种类型,我们建议通过计算信任和自信心模型来实现自动决策辅助。我们提供分析工具,以研究拟议的自主分配方案对机器人性能和人员工作量的稳态影响。我们还开发了一种使用非线性模型预测控制的自主决策模式校正算法,以帮助人们逐渐适应更好的分配模式。第二种是混合启动的双边遥操作控制方案,它需要混合使用自主控制和手动控制。对于这种类型,我们利用计算双向信任模型。在这里,混合启动是通过缩放具有人工对机器人信任度的功能的手动和自主控制输入来实现的。机器人发送的触觉力反馈提示具有计算机器人对人类信任的功能,可以动态缩放,以减少人类的实际工作量。;通过提出的控制方案,我们的在环测试表明,信任与手动分配方案相比,基于自动化的辅助决策通常可提高机器人的整体性能并减少操作员的工作量。提出的决策辅助工具通常也很受参与者欢迎。最后,基于信任的控制方案已扩展到单操作员多机器人应用程序。针对这些应用开发了理论控制框架,并通过基于被动性的措施解决了不同机器人之间切换方案下的稳定性和收敛性问题。

著录项

  • 作者

    Saeidi, Hamed.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Mechanical engineering.;Robotics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号