首页> 外文学位 >Sensor-based motion planning with kinematic and dynamic constraints.
【24h】

Sensor-based motion planning with kinematic and dynamic constraints.

机译:基于运动和动态约束的基于传感器的运动计划。

获取原文
获取原文并翻译 | 示例

摘要

This Ph.D. thesis addresses theoretical, algorithmic, and implementation issues of the role of system kinematics and dynamics in sensor-based motion planning. The emphasis is on real-time planning, on fast operation in a complex environment with unknown obstacles of arbitrary shapes, and on the efficiency of generated motion.; Today's sensor-based planning systems largely cannot handle dynamics and ignore the influence of various (e.g. nonholonomic) constraints on the robot motion planning. Consequently, they can be used only in those few applications where dynamics or such constraints are either absent or unimportant--which is rather rare in real-world tasks. The goal of this work is to remove these limitations.; In particular, three problems of two-dimensional sensor-based motion planning are solved: (1) an algorithmic approach is developed for handling robot dynamics in the context of sensor-driven holonomic systems; (2) a real-time solution is proposed of the shortest path problem for nonholonomic systems operating in an unlimited workspace; (3) a new problem in nonholonomic motion planning is introduced--curvature-constrained motion planning within a limited workspace; a methodology for handling this problem is developed, and constructive geometric and analytic solutions are produced.; The results of this work are expected to fill the existing gap between the availability of geometric approaches to sensor-based motion planning and desire for using these approaches in real-world applications. Theoretical results developed in the thesis can also be viewed as an attempt to provide a critical connection between control theory and dynamic systems analysis, on the one hand, and computational geometry, complexity theory, and artificial intelligence tools, on the other hand. On the application side, the developed methodology can be used in fully autonomous moving machinery (such as mobile robots and arm manipulators) as well as in human-machine systems (e.g. automobile control on smart highways and air traffic management systems).
机译:本博士本文讨论了系统运动学和动力学在基于传感器的运动计划中的作用的理论,算法和实现问题。重点是实时计划,在具有任意形状的未知障碍的复杂环境中的快速操作以及所产生运动的效率。当今基于传感器的计划系统在很大程度上无法处理动力学问题,而忽略了各种(例如非完整的)约束对机器人运动计划的影响。因此,它们只能用于缺少动力或约束不重要或不重要的少数应用程序中,这在实际任务中很少见。这项工作的目标是消除这些限制。尤其是,解决了基于二维传感器的运动计划的三个问题:(1)开发了一种算法方法来处理传感器驱动的完整系统环境中的机器人动力学; (2)针对在无限工作空间中运行的非完整系统,提出了最短路径问题的实时解决方案; (3)引入了非完整运动计划中的一个新问题-有限工作空间内的曲率约束运动计划;开发了解决该问题的方法,并产生了建设性的几何和解析解。预期这项工作的结果将填补基于传感器的运动计划的几何方法的可用性与在实际应用中使用这些方法的期望之间的现有差距。论文中提出的理论结果也可以看作是试图在控制理论和动态系统分析之间以及另一方面在计算几何学,复杂性理论和人工智能工具之间建立关键联系的尝试。在应用方面,开发的方法可用于全自动移动机械(例如移动机器人和机械臂)以及人机系统(例如智能高速公路上的汽车控制和空中交通管理系统)。

著录项

  • 作者

    Shkel, Andrei Mitchel.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Mechanical.; Engineering Automotive.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;自动化技术及设备;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号