首页> 外文学位 >Reliability characterization of advanced oxynitride gate dielectrics for ULSI MOSFET application.
【24h】

Reliability characterization of advanced oxynitride gate dielectrics for ULSI MOSFET application.

机译:用于ULSI MOSFET应用的高级氮氧化物栅极电介质的可靠性表征。

获取原文
获取原文并翻译 | 示例

摘要

The evolution of ULSI MOSFET technology has occurred primarily as a result of the increased number of devices on a chip. This has been accomplished by the aggressive scaling of feature size and gate oxide thickness of MOSFET. As a result, the reliability of the gate dielectrics becomes a more important issue. Moreover, use of aggressive plasma-based processes has become commonplace in modern integrated circuit manufacturing, requiring more reliable gate dielectrics against the plasma-induced damage.; This research work is initially divided into four parts; (1) plasma-induced charging damage in MOSFETs with NO-based oxynitride, (2) gate-induced drain leakage in MOSFETs with NO-based oxynitride, (3) soft breakdown characteristics in ultra-thin gate dielectrics, and (4) characterization of MOSFETs with oxynitride gate dielectrics fabricated at high pressure and low temperature.; Prior research has focused on the fabrication and development of NO-annealed oxynitridation. This research concentrates on reliability characterization of MOSFET with the oxynitride gate dielectrics formed by two advanced oxynitridation techniques with anneal of thermal oxide in NO-ambient and/or growth of oxynitride in high pressure N{dollar}sb2{dollar}O ambient, resulting in the formation of reliable gate dielectrics with low thermal budget against hot carrier reliability, plasma-induced charging damage, dielectric breakdown and boron penetration. However, it is found that nitrogen peak distribution around SiO{dollar}sb2{dollar}/Si-substrate interface degraded gate-induced drain leakage in N-MOSFETs and gate dielectric hardness in P-MOSFETs. In N-MOSFETs, nitrogen distribution underneath SiO{dollar}sb2{dollar} enhances the gate-induced drain leakage after hot carrier stress due to the enhanced band-to-defect tunneling through mid-gap traps at the buried nitrogen rich layer. In P-MOSFETs, boron accumulation within the dielectrics due to the nitrogen peak at SiO{dollar}sb2{dollar}/Si-substrate results in dielectric degradation. Nitrogen peak at top surface of the dielectrics was implemented with high pressure N{dollar}sb2{dollar}O oxynitridation in this research, suggesting one of the promising oxynitridation techniques for the future MOSFET technology.
机译:ULSI MOSFET技术的发展主要是由于芯片上设备数量的增加所致。这是通过对MOSFET的特征尺寸和栅极氧化层厚度进行大规模缩放而实现的。结果,栅极电介质的可靠性成为更重要的问题。此外,在现代集成电路制造中,使用基于侵蚀性等离子体的工艺已变得司空见惯,需要更可靠的栅极电介质来抵抗等离子体引起的损坏。这项研究工作最初分为四个部分。 (1)使用基于NO的氮氧化物的MOSFET中的等离子体引起的充电损伤;(2)使用基于NO的氮氧化物的MOSFET中的栅极引起的漏极泄漏;(3)超薄栅极电介质的软击穿特性;以及(4)表征在高压和低温下制造具有氮氧化物栅极电介质的MOSFET。先前的研究集中在NO退火氧氮化的制造和开发上。这项研究的重点是利用两种先进的氧氮化技术形成的氧氮化物栅极电介质的可靠性表征,该技术是通过在NO周围进行热氧化物退火和/或在高压N {dolal} sb2 {dollar} O环境中生长氧氮化物而形成的,具有低热收支的可靠栅极电介质的形成,与热载流子的可靠性,等离子体引起的电荷损坏,电介质击穿和硼的渗透有关。然而,发现SiO {dollar} sb2 {dollar} / Si-衬底界面周围的氮峰分布降低了N-MOSFET中的栅诱导的漏极泄漏和P-MOSFET中的栅介电硬度。在N-MOSFET中,由于在埋入富氮层中穿过中间带隙陷阱的能带缺陷隧穿增强,因此在热载流子应力后SiO {dolb} sb2 {dollar}下的氮分布会增加栅极诱导的漏漏。在P-MOSFET中,由于SiO {dollar} sb2 {dollar} / Si衬底上的氮峰,硼在电介质中的蓄积会导致电介质降解。在这项研究中,通过高压N {sb2 {dollar} O氧氮化来实现电介质顶面的氮峰,这表明了未来MOSFET技术的一种有希望的氧氮化技术。

著录项

  • 作者

    Min, Byoung Woon.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号