首页> 外文学位 >Asymptotic problems for stochastic processes with reflection and related PDE's.
【24h】

Asymptotic problems for stochastic processes with reflection and related PDE's.

机译:具有反射和相关PDE的随机过程的渐近问题。

获取原文
获取原文并翻译 | 示例

摘要

Asymptotic problems for stochastic processes with reflection and for related partial differential equations (PDE's) are considered in this thesis. The stochastic processes that we study, depend on a small parameter and are restricted to move in the interior of some domain, while having instantaneous reflection at the boundary of the domain. These stochastic processes are closely related to corresponding PDE problems that depend on a small parameter. We are interested in the behavior of these stochastic processes and of the solutions to the corresponding PDE problems as this small parameter goes to zero.;In particular, we consider two problems that are related to stochastic processes with reflection at the boundary of some domain.;Firstly, we study the Smoluchowski-Kramers approximation for the Langevin equation with reflection. According to the Smoluchowski-Kramers approximation, the solution of the equation mq&d3;m t=bqmt -q&d2;mt +sqmt Wt&d2;,qm 0=q,q&d2;m 0=p converges to the solution of the equation q˙t = b(qt) + sigma(q t)W˙t, q 0 = q as mu → 0. We consider here a similar result for the Langevin process with elastic reflection on the boundary of the half space, i.e. on 6Rn+ = {(x1,···, xn) ∈ Rn : x1 = 0}. After proving that such a process exists and is well defined, we prove that the Langevin process with reflection at x1 = 0 converges in distribution to the diffusion process with reflection on 6Rn+ . This convergence is the main justification for using a first order equation, instead of a second order one, to describe the motion of a small mass particle that is restricted to move in the interior of some domain and reflects elastically on its boundary.;Secondly, we study the second initial boundary problem in a narrow domain of width epsilon 1, denoted by Depsilon, for linear second order differential equations with nonlinear boundary conditions. The underlying stochastic process is the Wiener process Xet,Ye t in the narrow domain Depsilon with instantaneous normal reflection at its boundary. Using probabilistic methods we show that the solution of such a problem converges to the solution of a standard reaction-diffusion equation in a domain of reduced dimension as epsilon ↓ 0. This reduction allows to obtain some results concerning wave front propagation in narrow domains. In particular, we describe conditions leading to jumps of the wave front. This problem is important in applications (e.g., thin waveguides).
机译:本文考虑了带有反射的随机过程的渐近问题和相关的偏微分方程(PDE)的渐近问题。我们研究的随机过程取决于一个小的参数,并且被限制在某个域的内部移动,同时在域的边界处具有瞬时反射。这些随机过程与依赖于小参数的相应PDE问题密切相关。当这个小参数变为零时,我们对这些随机过程的行为以及相应PDE问题的解决方案感兴趣;特别是,我们考虑了与随机过程有关的两个问题,这些问题在某个领域的边界处发生了反射。 ;首先,我们研究了带反射的Langevin方程的Smoluchowski-Kramers逼近。根据Smoluchowski-Kramers近似,方程mq&d3; mt = bqmt -q&d2; mt + sqmt Wt&d2;,qm 0 = q,q&d2; m 0 = p的解收敛于方程q&t = b的解(qt)+ sigma(qt)Wt,q 0 = q as mu→0。在这里,我们考虑到Langevin过程的类似结果,即在半空间的边界上进行弹性反射,即在6Rn + = {(x1, ···,xn)∈Rn:x1 = 0}。在证明这种过程存在并且定义明确之后,我们证明在x1 = 0处反射的Langevin过程在分布上收敛到在6Rn +处反射的扩散过程。这种收敛是使用一阶方程而不是二阶方程来描述一个小质量粒子的运动的主要理由,该小质量粒子的运动被限制在某个域的内部移动并在其边界上弹性反射。对于具有非线性边界条件的线性二阶微分方程,我们研究了在宽度epsilon 1的狭窄域中的第二初始边界问题,用Depsilon表示。潜在的随机过程是在窄域Depsilon中的Wiener过程Xet,Ye t,其边界处具有瞬时法向反射。使用概率方法,我们证明了该问题的解在减小的域中(例如ε↓0)收敛到标准反应扩散方程的解。这种减小允许获得有关窄域中波前传播的一些结果。特别是,我们描述了导致波前跳跃的条件。这个问题在应用中(例如,细波导)很重要。

著录项

  • 作者

    Spiliopoulos, Konstantinos.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Mathematics.;Statistics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 94 p.
  • 总页数 94
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;统计学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号