首页> 外文学位 >Recursive learning for deformable object manipulation.
【24h】

Recursive learning for deformable object manipulation.

机译:递归学习可变形对象操作。

获取原文
获取原文并翻译 | 示例

摘要

This research addresses the problem of robotic grasping of 3-D deformable objects. Specifically, we seek to develop a generalized approach for handling of 3-D deformable objects in which prior knowledge of object attributes is not required and thus can be applied to an infinite number of object types (e.g. asymmetric, nonhomogeneous, nonlinear object types). Our methodology relies on the implementation of two main tasks. Our first task is to calculate deformation characteristics for a non-rigid object represented by a physically-based model. This model is derived from discretizing the object into a network of interconnected particles, springs, and damping elements. Using nonlinear partial differential equations, we model the particle motion of the deformable object in order to calculate the deformation characteristics. For our second task, we must calculate the minimum force required to lift the deformable object. This lifting force consists of a combination of the base force required to lift a rigid object of the same weight plus an additional force term which successfully compensates for the deformation of the object. This minimum lifting force can be learned using a technique called iterative lifting. With this method, the robotic system learns the required lifting force by lifting the object with iterative measurements of force. Once the deformation characteristics and the associated lifting force term are determined, they are used to train a neural network for extracting the minimum force required for subsequent deformable object manipulation tasks. Our developed algorithm is validated with two sets of experiments. The first experimental results are derived from the implementation of the algorithm in a simulated environment. The second set involves a physical implementation of the technique whose outcome is compared with the simulation results to test the real world validity of the developed methodology. This real world implementation consists of a dual vision system and two cooperative manipulators, each possessing an end-effector constructed as a fiat surface palm. Based on the simulation and real-world results, we are able to show that our physical, simulation, and theoretical lifting forces differ from each other maximally by a 14% error level.
机译:这项研究解决了3D变形对象的机器人抓取问题。具体而言,我们寻求开发一种用于处理3D变形对象的通用方法,该方法不需要对象属性的先验知识,因此可以应用于无限数量的对象类型(例如,非对称,非均匀,非线性对象类型)。我们的方法论依靠两个主要任务的实施。我们的首要任务是为基于物理模型的非刚性对象计算变形特性。该模型是通过将对象离散为相互连接的粒子,弹簧和阻尼元件组成的网络而得出的。使用非线性偏微分方程,我们对可变形物体的粒子运动进行建模,以计算变形特性。对于第二项任务,我们必须计算出提起可变形物体所需的最小力。该举升力由举起相同重量的刚性物体所需的基本力和成功补偿物体变形的附加力项组成。可以使用称为迭代提升的技术来学习此最小提升力。通过这种方法,机器人系统可以通过迭代测量力来提升物体,从而学习所需的提升力。一旦确定了变形特性和相关的提升力项,它们就可以用于训练神经网络,以提取后续可变形对象操纵任务所需的最小力。我们开发的算法经过两组实验验证。第一个实验结果是从算法在模拟环境中的实现中得出的。第二组涉及该技术的物理实施,其结果与仿真结果进行比较,以测试所开发方法的真实世界有效性。这个现实世界的实现包括一个双视觉系统和两个协作操纵器,每个操纵器都具有一个构造为平坦表面掌心的末端执行器。根据仿真和实际结果,我们可以证明我们的物理,仿真和理论提升力之间的最大差异为14%。

著录项

  • 作者

    Howard, Ayanna MacCalla.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Computer science.;Artificial intelligence.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号