首页> 外文学位 >Electron transport in the nanostructured titanium dioxide electrodes in the application of solar cells.
【24h】

Electron transport in the nanostructured titanium dioxide electrodes in the application of solar cells.

机译:太阳能电池应用中纳米结构二氧化钛电极中的电子传输。

获取原文
获取原文并翻译 | 示例

摘要

The high efficiency of dye sensitized nanostructured TiO 2 photoelectrochemical solar cells underlines the high charge transfer efficiency at the semiconductor/dye interface and the ability of the nanometer sized TiO2 particle network in intimate contact with the electrolyte to transport the injected electrons without significant losses. The operating mechanisms of these photoelectrochemical systems are reviewed. The focus of this dissertation is the photoelectrical properties of nanostructured TiO 2 films and the associated charge transport process. Transient techniques, both in the time domain and frequency domain were used to probe the electron transport in the TiO2 electrodes.;The conductivity of nanostructured TiO2 thin films increases several orders of magnitude under illumination yet the conductivity is very low in the dark, illustrating the fact that the conductivity is strongly dependent on the trapped charges in these films. Due to the lack of a strong electrical field, charge transport only becomes efficient after the build up of a concentration gradient to drive the electron transport process, resulting in slow photocurrent and photovoltage transients in the photoelectrochemical cells. The open circuit photovoltages follow the conventional diode equation. This can be understood in terms of the Fermi level at the TiO2/tin oxide contact. The injection of electrons leads to the increase of the Fermi level at the contact. The time constants obtained follow a simple power law relationship with the light intensity reflecting the kinetics of electron transport in the nanostructured electrodes.;The essential features of the nonsteady state response can be described by a diffusion model where the electron diffusion coefficient is dependent on light intensity. The lack of electron migration can be rationalized by the fact that any electrical field in the porous electrodes may be neutralized by the mobile ions in the electrolyte.
机译:染料敏化的纳米结构TiO 2光电化学太阳能电池的高效率突显了半导体/染料界面上的高电荷转移效率,以及与电解质紧密接触的纳米级TiO2粒子网络能够在不显着损失的情况下传输注入的电子。这些光电化学系统的运行机制进行了审查。本文的重点是纳米结构的TiO 2薄膜的光电性能及相关的电荷传输过程。时域和频域的瞬态技术都被用来探测TiO2电极中的电子传输。纳米结构的TiO2薄膜的电导率在光照下增加了几个数量级,但在黑暗中电导率非常低,说明了事实上,电导率很大程度上取决于这些薄膜中的俘获电荷。由于缺乏强电场,电荷传输仅在建立浓度梯度以驱动电子传输过程后才有效,从而导致光电化学电池中的光电流和光电压瞬变缓慢。开路光电压遵循常规二极管方程。可以从TiO2 /氧化锡接触处的费米能级来理解。电子的注入导致接触处费米能级的增加。获得的时间常数遵循简单的幂定律关系,其光强度反映了纳米结构电极中电子传输的动力学。;非稳态响应的基本特征可以通过扩散模型描述,其中电子扩散系数取决于光强度。电子迁移的缺乏可以通过以下事实来合理化:多孔电极中的任何电场都可以被电解质中的移动离子中和。

著录项

  • 作者

    Cao, Fei.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Materials science.;Chemical engineering.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号